scholarly journals Diversity and distribution of hyperiid amphipods along a latitudinal transect in the Atlantic Ocean

2017 ◽  
Vol 158 ◽  
pp. 224-235 ◽  
Author(s):  
Alice K. Burridge ◽  
Marloes Tump ◽  
Ronald Vonk ◽  
Erica Goetze ◽  
Katja T.C.A. Peijnenburg
2010 ◽  
Vol 7 (5) ◽  
pp. 1701-1713 ◽  
Author(s):  
S. Martínez-García ◽  
E. Fernández ◽  
A. Calvo-Díaz ◽  
E. Marañón ◽  
X. A. G. Morán ◽  
...  

Abstract. The effects of inorganic and/or organic nutrient inputs on phytoplankton and heterotrophic bacteria have never been concurrently assessed in open ocean oligotrophic communities over a wide spatial gradient. We studied the effects of potentially limiting inorganic (nitrate, ammonium, phosphate, silica) and organic nutrient (glucose, aminoacids) inputs added separately as well as jointly, on microbial plankton biomass, community structure and metabolism in five microcosm experiments conducted along a latitudinal transect in the Atlantic Ocean (from 26° N to 29° S). Primary production rates increased up to 1.8-fold. Bacterial respiration and microbial community respiration increased up to 14.3 and 12.7-fold respectively. Bacterial production and bacterial growth efficiency increased up to 58.8-fold and 2.5-fold respectively. The largest increases were measured after mixed inorganic-organic nutrients additions. Changes in microbial plankton biomass were small as compared with those in metabolic rates. A north to south increase in the response of heterotrophic bacteria was observed, which could be related to a latitudinal gradient in phosphorus availability. Our results suggest that organic matter inputs will result in a predominantly heterotrophic versus autotrophic response and in increases in bacterial growth efficiency, particularly in the southern hemisphere. Subtle differences in the initial environmental and biological conditions are likely to result in differential microbial responses to inorganic and organic matter inputs.


2010 ◽  
Vol 7 (1) ◽  
pp. 463-502
Author(s):  
S. Martínez-García ◽  
E. Fernández ◽  
A. Calvo-Díaz ◽  
E. Marañón ◽  
X. A. G. Morán ◽  
...  

Abstract. Atmospheric nutrient deposition into the open ocean increased over the past decades as a result of human activity and water-soluble organic nitrogen accounts for up to 30% of the total nitrogen inputs. The effects of inorganic and/or organic nutrient inputs on phytoplankton and heterotrophic bacteria have never been concurrently assessed in open ocean oligotrophic communities over a wide spatial gradient. We studied the effects of potentially limiting inorganic (nitrate, ammonium, phosphate, silica) and organic nutrient (glucose, aminoacids) inputs on microbial plankton biomass, community structure and metabolism in five microcosm experiments conducted along a latitudinal transect in the Atlantic Ocean (from 26° N to 29° S). Primary production rates increased up to 1.8-fold. Bacterial respiration and microbial community respiration increased up to 14.3 and 12.7-fold, respectively. Bacterial production and bacterial growth efficiency increased up to 58.8-fold and 2.5-fold, respectively. The largest increases were measured after mixed inorganic-organic nutrients additions. Changes in microbial plankton biomass were small as compared with those in metabolic rates. A north to south increase in the response of heterotrophic bacteria was observed, which could be related to a latitudinal gradient in phosphorus availability. Our results suggest that organic matter inputs associated with atmospheric deposition into the Atlantic Ocean will result in a predominantly heterotrophic versus autotrophic response and in increases in bacterial growth efficiency, particularly in the Southern Hemisphere. Subtle differences in the initial environmental and biological conditions are likely to result in differential microbial responses to inorganic and organic matter inputs.


2021 ◽  
Author(s):  
Winifred M. Johnson ◽  
Melissa C. Kido Soule ◽  
Krista Longnecker ◽  
Maya P. Bhatia ◽  
Steven J. Hallam ◽  
...  

AbstractMetabolites, or the small organic molecules that are synthesized by cells during metabolism, comprise a complex and dynamic pool of carbon in the ocean. They are an essential form of information, linking genotype to phenotype at the individual, population and community levels of biological organization. Characterizing metabolite distributions inside microbial cells and dissolved in seawater is essential to understanding the controls on their production and fate, as well as their roles in shaping marine microbial food webs. Here, we apply a targeted metabolomics method to quantify particulate and dissolved distributions of a suite of biologically relevant metabolites including vitamins, amino acids, nucleic acids, osmolytes, and intermediates in biosynthetic pathways along a latitudinal transect in the western Atlantic Ocean. We find that, in the euphotic zone, most particulate or intracellular metabolites positively co-vary with the most abundant microbial taxa. In contrast, dissolved metabolites exhibited greater variability with differences in distribution between ocean regions. Although fewer particulate metabolites were detected below the euphotic zone, molecules identified in the deep ocean may be linked to preservation of organic matter or adaptive physiological strategies of deep-sea microbes. Based on the identified metabolite distributions, we propose relationships between certain metabolites and microbial populations, and find that dissolved metabolite distributions are not directly related to their particulate abundances.


2011 ◽  
Vol 56 (3) ◽  
pp. 999-1007 ◽  
Author(s):  
Beatriz Mouriño-Carballido ◽  
Rocío Graña ◽  
Ana Fernàndez ◽  
Antonio Bode ◽  
Manuel Varela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document