scholarly journals Variability of Micronektonic Crustacean Community along a Latitudinal Transect in the Atlantic Ocean: Implications for Carbon Export

2021 ◽  
Author(s):  
Javier Díaz Pérez
2010 ◽  
Vol 7 (5) ◽  
pp. 1701-1713 ◽  
Author(s):  
S. Martínez-García ◽  
E. Fernández ◽  
A. Calvo-Díaz ◽  
E. Marañón ◽  
X. A. G. Morán ◽  
...  

Abstract. The effects of inorganic and/or organic nutrient inputs on phytoplankton and heterotrophic bacteria have never been concurrently assessed in open ocean oligotrophic communities over a wide spatial gradient. We studied the effects of potentially limiting inorganic (nitrate, ammonium, phosphate, silica) and organic nutrient (glucose, aminoacids) inputs added separately as well as jointly, on microbial plankton biomass, community structure and metabolism in five microcosm experiments conducted along a latitudinal transect in the Atlantic Ocean (from 26° N to 29° S). Primary production rates increased up to 1.8-fold. Bacterial respiration and microbial community respiration increased up to 14.3 and 12.7-fold respectively. Bacterial production and bacterial growth efficiency increased up to 58.8-fold and 2.5-fold respectively. The largest increases were measured after mixed inorganic-organic nutrients additions. Changes in microbial plankton biomass were small as compared with those in metabolic rates. A north to south increase in the response of heterotrophic bacteria was observed, which could be related to a latitudinal gradient in phosphorus availability. Our results suggest that organic matter inputs will result in a predominantly heterotrophic versus autotrophic response and in increases in bacterial growth efficiency, particularly in the southern hemisphere. Subtle differences in the initial environmental and biological conditions are likely to result in differential microbial responses to inorganic and organic matter inputs.


2017 ◽  
Vol 129 ◽  
pp. 116-130 ◽  
Author(s):  
Viena Puigcorbé ◽  
Montserrat Roca-Martí ◽  
Pere Masqué ◽  
Claudia Benitez-Nelson ◽  
Michiel Rutgers van der Loeff ◽  
...  

2010 ◽  
Vol 7 (1) ◽  
pp. 463-502
Author(s):  
S. Martínez-García ◽  
E. Fernández ◽  
A. Calvo-Díaz ◽  
E. Marañón ◽  
X. A. G. Morán ◽  
...  

Abstract. Atmospheric nutrient deposition into the open ocean increased over the past decades as a result of human activity and water-soluble organic nitrogen accounts for up to 30% of the total nitrogen inputs. The effects of inorganic and/or organic nutrient inputs on phytoplankton and heterotrophic bacteria have never been concurrently assessed in open ocean oligotrophic communities over a wide spatial gradient. We studied the effects of potentially limiting inorganic (nitrate, ammonium, phosphate, silica) and organic nutrient (glucose, aminoacids) inputs on microbial plankton biomass, community structure and metabolism in five microcosm experiments conducted along a latitudinal transect in the Atlantic Ocean (from 26° N to 29° S). Primary production rates increased up to 1.8-fold. Bacterial respiration and microbial community respiration increased up to 14.3 and 12.7-fold, respectively. Bacterial production and bacterial growth efficiency increased up to 58.8-fold and 2.5-fold, respectively. The largest increases were measured after mixed inorganic-organic nutrients additions. Changes in microbial plankton biomass were small as compared with those in metabolic rates. A north to south increase in the response of heterotrophic bacteria was observed, which could be related to a latitudinal gradient in phosphorus availability. Our results suggest that organic matter inputs associated with atmospheric deposition into the Atlantic Ocean will result in a predominantly heterotrophic versus autotrophic response and in increases in bacterial growth efficiency, particularly in the Southern Hemisphere. Subtle differences in the initial environmental and biological conditions are likely to result in differential microbial responses to inorganic and organic matter inputs.


2017 ◽  
Vol 158 ◽  
pp. 224-235 ◽  
Author(s):  
Alice K. Burridge ◽  
Marloes Tump ◽  
Ronald Vonk ◽  
Erica Goetze ◽  
Katja T.C.A. Peijnenburg

Sign in / Sign up

Export Citation Format

Share Document