Joint effects of sea ice melt, freshwater discharge and tidal currents on zooplankton abundance in the Sea of Okhotsk: 2004 and 2013

Polar Science ◽  
2021 ◽  
pp. 100781
Author(s):  
Konstantin A. Rogachev ◽  
Corinne Pomerleau ◽  
Natalia V. Shlyk ◽  
Eddy C. Carmack
2012 ◽  
Vol 25 (7) ◽  
pp. 2261-2278 ◽  
Author(s):  
Sohey Nihashi ◽  
Kay I. Ohshima ◽  
Noriaki Kimura

Abstract Sea ice formation, its transport, and its melting cause the redistribution of heat and salt, which plays an important role in the climate and biogeochemical systems. In the Sea of Okhotsk, a heat and salt flux dataset is created in which such sea ice processes are included, with a spatial resolution of ~12.5 km. The dataset is based on a heat budget analysis using ice concentration, thickness, and drift speed from satellite observations and the ECMWF Interim Re-Analysis (ERA-Interim) data. The salt flux calculation considers both salt supplied to the ocean from sea ice production and freshwater supplied when the ice melts. This dataset will be useful for the validation and boundary conditions of modeling studies. The spatial distribution of the annual fluxes shows a distinct contrast between north and south: significant ocean cooling with salt supply is shown in the northern coastal polynya region, while ocean heating with freshwater supply is shown in the south. This contrast suggests a transport of freshwater and negative heat by ice advection. The annual fluxes also show ocean cooling with freshwater supply in the Kashevarov Bank (KB) region and the central and eastern Sea of Okhotsk, suggesting the effect of warm water advection. In the ice melt season, relatively prominent ice melting is shown in the coastal polynya region, probably due to large solar heating of the upper ocean. This indicates that the polynya works as a “meltwater factory” in spring, contrasting with its role as an “ice factory” in winter. In the coastal polynya region, the spatial distribution of phytoplankton bloom roughly corresponds with the ice melt region.


Author(s):  
S. Kishi ◽  
K. I. Ohshima ◽  
J. Nishioka ◽  
N. Isshiki ◽  
S. Nihashi ◽  
...  

2020 ◽  
Author(s):  
Sachiko Kishi ◽  
Kay I. Ohshima ◽  
Jun Nishioka ◽  
Noriaki Isshiki ◽  
Sohey Nihashi ◽  
...  

Author(s):  
Margarita Illarionova ◽  
Margarita Illarionova

The Shantar Islands is the group of islands satiated in the Sea of Okhotsk near the exit of Uda Bay, Tugur Bay and Ulban Bay. The islands separated from the mainland and started to exist only 6000 years ago. It happened under the influence of the sea transgression followed by flooding of some parts of the land surface and isolation of the most elevated mountain parts from the mainland. The climate of The Shantar Island is more severe than the climate in the North part of the Sea of Okhotsk due to its proximity to cold regions of Yakutia, complex system of wind and tidal currents, the duration of the ice period, loads of fog and frequent storm winds. The height of tides on the islands can reach 8 meters, and these tidal currents are considered as one of the fastest tides of the World Ocean. The ice near the islands appears in the beginning of November and doesn’t melt for 8-9 months, usually, till mid-July, but some years till mid-August. Such severe ice conditions cannot be observed anywhere else in the Sea of Okhotsk. The variety of forms of the Shantar Islands is a consequence of severe ice conditions, unusual tidal currents and irregularity of the seashore. The most important seashores forming factor is considered to be the activity of sea ice.


Author(s):  
Margarita Illarionova ◽  
Margarita Illarionova

The Shantar Islands is the group of islands satiated in the Sea of Okhotsk near the exit of Uda Bay, Tugur Bay and Ulban Bay. The islands separated from the mainland and started to exist only 6000 years ago. It happened under the influence of the sea transgression followed by flooding of some parts of the land surface and isolation of the most elevated mountain parts from the mainland. The climate of The Shantar Island is more severe than the climate in the North part of the Sea of Okhotsk due to its proximity to cold regions of Yakutia, complex system of wind and tidal currents, the duration of the ice period, loads of fog and frequent storm winds. The height of tides on the islands can reach 8 meters, and these tidal currents are considered as one of the fastest tides of the World Ocean. The ice near the islands appears in the beginning of November and doesn’t melt for 8-9 months, usually, till mid-July, but some years till mid-August. Such severe ice conditions cannot be observed anywhere else in the Sea of Okhotsk. The variety of forms of the Shantar Islands is a consequence of severe ice conditions, unusual tidal currents and irregularity of the seashore. The most important seashores forming factor is considered to be the activity of sea ice.


2021 ◽  
Author(s):  
Matthew Z. Williams ◽  
Melissa Gervais ◽  
Chris E. Forest

Sign in / Sign up

Export Citation Format

Share Document