scholarly journals The Prominent Spring Bloom and Its Relation to Sea-ice Melt in the Sea of Okhotsk, Revealed by Profiling Floats

2020 ◽  
Author(s):  
Sachiko Kishi ◽  
Kay I. Ohshima ◽  
Jun Nishioka ◽  
Noriaki Isshiki ◽  
Sohey Nihashi ◽  
...  
Author(s):  
S. Kishi ◽  
K. I. Ohshima ◽  
J. Nishioka ◽  
N. Isshiki ◽  
S. Nihashi ◽  
...  

2012 ◽  
Vol 25 (7) ◽  
pp. 2261-2278 ◽  
Author(s):  
Sohey Nihashi ◽  
Kay I. Ohshima ◽  
Noriaki Kimura

Abstract Sea ice formation, its transport, and its melting cause the redistribution of heat and salt, which plays an important role in the climate and biogeochemical systems. In the Sea of Okhotsk, a heat and salt flux dataset is created in which such sea ice processes are included, with a spatial resolution of ~12.5 km. The dataset is based on a heat budget analysis using ice concentration, thickness, and drift speed from satellite observations and the ECMWF Interim Re-Analysis (ERA-Interim) data. The salt flux calculation considers both salt supplied to the ocean from sea ice production and freshwater supplied when the ice melts. This dataset will be useful for the validation and boundary conditions of modeling studies. The spatial distribution of the annual fluxes shows a distinct contrast between north and south: significant ocean cooling with salt supply is shown in the northern coastal polynya region, while ocean heating with freshwater supply is shown in the south. This contrast suggests a transport of freshwater and negative heat by ice advection. The annual fluxes also show ocean cooling with freshwater supply in the Kashevarov Bank (KB) region and the central and eastern Sea of Okhotsk, suggesting the effect of warm water advection. In the ice melt season, relatively prominent ice melting is shown in the coastal polynya region, probably due to large solar heating of the upper ocean. This indicates that the polynya works as a “meltwater factory” in spring, contrasting with its role as an “ice factory” in winter. In the coastal polynya region, the spatial distribution of phytoplankton bloom roughly corresponds with the ice melt region.


2021 ◽  
Author(s):  
Matthew Z. Williams ◽  
Melissa Gervais ◽  
Chris E. Forest

2001 ◽  
Vol 79 (1) ◽  
pp. 123-129 ◽  
Author(s):  
Masayo Ogi ◽  
Yoshihiro Tachibana ◽  
Fumihiko Nishio ◽  
Michael A. Danchenkov

2011 ◽  
Vol 52 (57) ◽  
pp. 1-8 ◽  
Author(s):  
Yasushi Fukamachi ◽  
Kay I. Ohshima ◽  
Yuji Mukai ◽  
Genta Mizuta ◽  
Masaaki Wakatsuchi

AbstractIn the southwestern part of the Sea of Okhotsk off Hokkaido, sea-ice drift characteristics are investigated using the ice and water velocities obtained from a moored upward-looking acoustic Doppler current profiler (ADCP) during the winters of 1999–2001. Using hourly-mean values of these data along with the wind data measured at a nearby coastal station, the wind factor and turning angle of the relative velocity between the ice and water velocities with respect to the wind are calculated assuming free drift under various conditions. Since the simultaneous sea-ice draft data are also available from a moored ice-profiling sonar (IPS), we examine the dependence of drift characteristics on ice thickness for the first time. As ice thickness increases and wind decreases, the wind factor decreases and the turning angle increases, as predicted by the theory of free drift. This study clearly shows the utility of the moored ADCP measurement for studying sea-ice drift, especially with the simultaneous IPS measurement for ice thickness, which cannot be obtained by other methods.


2015 ◽  
Vol 56 (69) ◽  
pp. 1-8 ◽  
Author(s):  
Mats A. Granskog ◽  
Daiki Nomura ◽  
Susann Müller ◽  
Andreas Krell ◽  
Takenobu Toyota ◽  
...  

AbstractAbsorption and fluorescence of chromophoric dissolved organic matter (CDOM) in sea ice and surface waters in the southern Sea of Okhotsk was examined. Sea-water CDOM had featureless absorption increasing exponentially with shorter wavelengths. Sea ice showed distinct absorption peaks in the ultraviolet, especially in younger ice. Older first-year sea ice had relatively flat absorption spectra in the ultraviolet range. Parallel factor analysis (PARAFAC) identified five fluorescent CDOM components, two humic-like and three protein-like. Sea water was largely governed by humic-like fluorescence. In sea ice, protein-like fluorescence was found in considerable excess relative to sea water. The accumulation of protein-like CDOM fluorescence in sea ice is likely a result of biological activity within the ice. Nevertheless, sea ice does not contribute excess CDOM during melt, but the material released will be of different composition than that present in the underlying waters. Thus, at least transiently, the CDOM introduced during sea-ice melt might provide a more labile source of fresher protein-like DOM to surface waters in the southern Sea of Okhotsk.


Sign in / Sign up

Export Citation Format

Share Document