scholarly journals Distorted five-coordinate square pyramidal geometry of a cadmium(II) complex containing a 2-methylimidazole ligand: Crystal structure and axial ligand effect on spectroscopic properties

Polyhedron ◽  
2019 ◽  
Vol 173 ◽  
pp. 114107 ◽  
Author(s):  
Chadlia Mchiri ◽  
Habib Nasri ◽  
Céline Frochot ◽  
Samir Acherar
Author(s):  
Wafa Harhouri ◽  
Salma Dhifaoui ◽  
Shabir Najmudin ◽  
Cecilia Bonifácio ◽  
Habib Nasri

In the title compound, [Mn(C44H28N4)Cl]·2C5H6N2, the MnIIIcentre is coordinated by four pyrrole N atoms [averaged Mn—N = 2.012 (4) Å] of the tetraphenylporphyrin molecule and one chloride axial ligand [Mn—Cl = 2.4315 (7) Å] in a square-pyramidal geometry. The porphyrin macrocycle exhibits a non-planar conformation with majorrufflingandsaddlingdistortions. In the crystal, two independent solvent molecules form dimers through N—H...N hydrogen bonding. In these dimers, one amino N atom has a short Mn...N contact of 2.642 (1) Å thus completing the Mn environment in the form of a distorted octahedron, and another amino atom generates weak N—H...Cl hydrogen bonds, which link further all molecules into chains along theaaxis.


Author(s):  
Soumaya Nasri ◽  
Nesrine Amiri ◽  
Ilona Turowska-Tyrk ◽  
Jean-Claude Daran ◽  
Habib Nasri

In the title compound, [Zn(C72H44N4O8)(C6H4N2)]·C6H4N2or [Zn(TPBP)(4-CNpy]·(4-CNpy) [where TPBP and 4-CNpy are 5,10,15,20-(tetraphenylbenzoate)porphyrinate and 4-cyanopyridine, respectively], the ZnIIcation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-CNpy axial ligand in a distorted square-pyramidal geometry. The average Zn—N(pyrrole) bond length is 2.060 (6) Å and the Zn—N(4-CNpy) bond length is 2.159 (2) Å. The zinc cation is displaced by 0.319 (1) Å from the N4C20mean plane of the porphyrinate anion toward the 4-cyanopyridine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling and doming deformations. In the crystal, the [Zn(TPBP)(4-CNpy)] complex molecules are linked togetherviaweak C—H...N, C—H...O and C—H...π interactions, forming supramolecular channels parallel to thecaxis. The non-coordinating 4-cyanopyridine molecules are located in the channels and linked with the complex molecules,viaweak C—H...N interactions and π-π stacking orviaweak C—H...O and C—H...π interactions. The non-coordinating 4-cyanopyridine molecule is disordered over two positions with an occupancy ratio of 0.666 (4):0.334 (4).


2021 ◽  
Vol 76 (3-4) ◽  
pp. 193-199
Author(s):  
Muhammad Said ◽  
Sadia Rehman ◽  
Muhammad Ikram ◽  
Hizbullah Khan ◽  
Carola Schulzke

Abstract Three guanidine-derived tri-substituted ligands viz. N-pivaloyl-N′,N″-bis-(2-methoxyphenyl)guanidine (L1), N-pivaloyl-N′-(2-methoxyphenyl)-N″-phenylguanidine (L2) and N-pivaloyl-N′-(2-methoxyphenyl)-N″-(2-tolyl)guanidine (L3) were reacted with Cu(II) acetate to produce the corresponding complexes. The significance of the substituent on N″ for the resulting molecular structures and their packing in the solid state has been studied with respect to the structural specifics of the corresponding Cu(II) complexes. The key characteristic of the guanidine-based metal complexation with Cu(II) is the formation of an essentially square planar core with an N2O2 donor set. As an exception, in the complex of L1, the substituent’s methoxy moiety also interacts with the Cu(II) center to generate a square-pyramidal geometry. The hydroxyl groups of the imidic acid tautomeric forms of L1–L3, in addition to N″, are also bonded to Cu(II) in all three complexes rather than the nitrogen donor of the guanidine motif.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Gauri D. Bajju ◽  
Altaf Ahmed ◽  
Deepmala Gupta ◽  
Ashu Kapahi ◽  
Gita Devi

The synthesis and spectroscopic characterization of new axially ligated indium(III) porphyrin complexes were reported. Chloroindium(III) porphyrin (TPPIn-Cl) was obtained in good yield by treating the corresponding free base with indium trichloride. The action of the different phenols on chloroderivatives (TPPIn-Cl) led to the corresponding phenolato complexes (TPPIn-X). These derivatives were characterized on the basis of mass spectrometry,1H-NMR, IR, and UV-visible data. The separation and isolation of these derivatives have been achieved through chromatography. The spectral properties of free base porphyrin and its corresponding metallated and axially ligated indium(III) porphyrin compounds were compared with each other. A detailed analysis of UV-Vis,1H-NMR, and IR suggested the transformation from free base porphyrin to indium(III) porphyrin. Besides,13C-NMR and fluorescence spectra were also reported and interpreted. The stability of these derivatives has also been studied through thermogravimetry. The complexes were also screened for anticancerous activities. Among all the complexes, 4-MePhO-InTPP shows highest anticancerous activity. The title complexe, TPPIn-X (where X = different phenolates), represents a five-coordinate indium(III) porphyrin complex in a square-pyramidal geometry with the phenolate anion as the axial ligand.


1986 ◽  
Vol 39 (5) ◽  
pp. 813 ◽  
Author(s):  
ERT Tiekink ◽  
G Winter

The crystal and molecular structure of the 1:1 adduct formed between bis (O- ethylxanthato )nickel(II) and triphenylphosphine is reported. The nickel atom is five-coordinate in a distorted square-pyramidal geometry with a sulfur atom, from an asymmetrically coordinating xanthate ligand , in the apical position. Crystals are triclinic, space group Pī, a 10.265(4), b 14.718(5), c 8.818(4) Ǻ, α 100.77(3), β 92.16(4), γ 89.56(3)° with Z 2. The structure was refined by a least-squares method; R 0.068 for 3301 reflections with I ≥ 3.0σ(I).


Author(s):  
Katherine A. Bussey ◽  
Annie R. Cavalier ◽  
Jennifer R. Connell ◽  
Margaret E. Mraz ◽  
Kayode D. Oshin ◽  
...  

In the title compound, [CuCl(C17H19Cl4N3)]ClO4, the CuIIion adopts a distorted square-planar geometry defined by one chloride ligand and the three nitrogen atoms from the bis[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine ligand. The perchlorate counter-ion is disordered over three sets of sites with refined occupancies 0.0634 (17), 0.221 (16) and 0.145 (7). In addition, the hetero-scorpionate arm of the bis[(pyridin-2-yl)methyl](3,5,5,5-tetrachloropentyl)amine ligand is disordered over two sets of sites with refined occupancies 0.839 (2) and 0.161 (2). In the crystal, weak Cu...Cl interactions between symmetry-related molecules create a dimerization with a chloride occupying the apical position of the square-pyramidal geometry typical of many copper(II) chloride hetero-scorpionate complexes.


2015 ◽  
Vol 19 (10) ◽  
pp. 1107-1113 ◽  
Author(s):  
Qiong Yu ◽  
Wei-Xia Xu ◽  
Ya-Hong Yao ◽  
Zeng-Qi Zhang ◽  
Shu Sun ◽  
...  

One novel porphyrin 5,10,15-tris(phenyl)-20-[4-(2-(2-methyl-5-nitro-imidazolyl)ethoxyl)phenyl] porphyrin and its zinc(II) metalloporphyrin were synthesized and characterized by IR, UV-vis, 1H NMR, MS and elemental analysis. The single crystal structure of zinc(II) porphyrin shows that the Zn(II) ion is coordinated with four nitrogen atoms of porphyrin ring and one oxygen atom of ethanol from axial, forming a five-coordinated square pyramidal geometry. Their cytotoxicity and photodynamic activity against breast cancer cells were studied. The results indicate that both of the porphyrins display high phototoxicity to the breast cancer cells with the negligible dark toxicity. In addition, the photodynamic activity of zinc(II) porphyrin was obviously higher than that of the free porphyrin.


2001 ◽  
Vol 56 (6) ◽  
pp. 521-525 ◽  
Author(s):  
Maciej Bujak ◽  
Jacek Zaleski

AbstractN ,N-Dimethylethylenediammonium pentachloroantimonate(III) crystallizes in the monoclinic system, in space group P21/c (a = 12.460(2), b = 10.252(2), c = 10.330(2) Å, β = 97.75(3)°, V = 1307.5(4) Å3, Z = 4, dc = 1.997, dm = 1.99(2) g/cm3). The crystal structure of [(CH3)2NH(CH2)2NH3][SbCl5] consists of isolated [SbCl5]2- anions and [(CH3)2NH(CH2)2NH3]2+ cations. The [SbCl5]2- anion has a distorted square pyramidal geometry, presenting one short axial and four long equatorial Sb-Cl bonds. The square pyramids are characteristically stacked one close to the other, parallel to the c axis. The voids between the anionic sublattice are filled by [(CH3)2NH(CH2)2NH3]2+ cations. The five non-equivalent Sb-Cl bond distances within the [SbCl5]2- square pyramid are significantly different. The equatorial Sb-Cl bonds are in the range 2.427(2)-2.968(2) Å, whereas the axial one is 2.384(1) Å long. The study reveals that N-H...C1 hydrogen bonds are responsible for the deformation of equatorial Sb-Cl bonds from the mean value of 2.654(7) Å. Analysis of intermolecular interactions between the [SbCl5]2- pyramids in the structure, reflected in changes of Sb-Cl bond lengths from the values characteristic of non-interacting pyramids, leads to the conclusion that the van der Waals radius of Sb is significantly smaller than that estimated by Pauling.


2018 ◽  
Vol 74 (12) ◽  
pp. 1751-1754
Author(s):  
Alexander Yu. Mitrofanov ◽  
Yoann Rousselin

In the title compound, [Cu2(OH)2{C12H7N2(PO3C2H5)}2(H2O)2]·7H2O, two Cu2+cations are bridged by two hydroxide groups, forming a centrosymmetric binuclear complex. Each Cu2+cation is further coordinated by the N atoms of a bidentate ethyl (1,10-phenanthrolin-3-yl)phosphonate anion and a water molecule in a square-pyramidal geometry. In the crystal, a network of O—H...O hydrogen bonds involving the P(O)(O−)(OEt) groups, bridging hydroxyl groups, coordinated and uncoordinated water molecules generates a three-dimensional supramolecular structure. The ethyl group exhibits disorder and was modelled over three sites with occupancies of 0.455, 0.384 and 0.161.


2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Sundaramurthy Santha Lakshmi ◽  
Kannappan Geetha

Ternary Schiff base copper(II) complex [CuL(tmpda)] (where H2L is N-(salicylidene)-L-valine; tmpda is N,N,N′,N′-tetramethyl-1,3-propanediamine) has been characterized by UV-Vis., FTIR, and single crystal XRD. The crystal structure displays a distorted square pyramidal geometry in which Schiff base is bonded to the Cu(II) ion via phenolate oxygen, imine nitrogen, and an oxygen atom of the carboxylate group through the basal plane and the chelating diamine, N,N,N′,N′-tetramethyl-1,3-propanediamine, displays an axial and equatorial mode of binding via NN-donor atoms.


Sign in / Sign up

Export Citation Format

Share Document