Preparation and characterization of polyphosphazene-based flame retardants with different functional groups

Author(s):  
Yuanzhao Zhu ◽  
Wei Wu ◽  
Tong Xu ◽  
Hong Xu ◽  
Yi Zhong ◽  
...  
2008 ◽  
Vol 59 (2) ◽  
pp. 212-215 ◽  
Author(s):  
Catalin Tanase ◽  
Aurel Pui

The present study is devoted to the IR�FT characterization of some fungi species, to the identification of their main functional groups, as well as to emphasize the presence of some toxic substances in the structure of certain sporiferous plants.


2021 ◽  
Author(s):  
Ahmed Fouzi Tarchoun ◽  
Djalal Trache ◽  
Thomas M. Klapötke ◽  
Amir Abdelaziz ◽  
Mehdi Derradji ◽  
...  

Fuel ◽  
2017 ◽  
Vol 206 ◽  
pp. 555-563 ◽  
Author(s):  
Xueqiu He ◽  
Xianfeng Liu ◽  
Baisheng Nie ◽  
Dazhao Song

ChemPhysChem ◽  
2021 ◽  
Author(s):  
Florian Venel ◽  
Hiroki Nagashima ◽  
Andrew G.M. Rankin ◽  
Christelle Anquetil ◽  
Vytautas Klimavicius ◽  
...  

2008 ◽  
Vol 8 (12) ◽  
pp. 6316-6324 ◽  
Author(s):  
M. Comes Franchini ◽  
P. Fabbri ◽  
A. Frache ◽  
G. Ori ◽  
M. Messori ◽  
...  

Two organophilic bentonites, based on nitrogen-containing compounds, have been synthesised via ion exchange starting from pristine bentonite with octadecyltrimethylammonium bromide (OTAB) and with synthetic melamine-derived N2,N4-dihexadecyl-1,3,5-triazine-2,4,6-triamine (DEDMEL). The chemical and morphological characterization of the organoclays was based on XRD, TEM, Laser Granulometry, X-Ray Fluorescence and CEC capacity. Copoly(styrene-butadiene-styrene)-nanocomposites (SBS-nanocomposites) were obtained by intercalation of the SBS-copolymer into these new organoclays by melt intercalation method. XRD and TEM analysis of the organoclays and of the micro/nano-composites obtained are presented. The effect of the organoclays on the SBS-nanocomposite's flammability properties was investigated using cone calorimeter. An encouraging decrease of 20% in the peak heat released rate (PHRR) has been obtained confirming the important role of melamine's based skeleton and its derived organoclays to act as effective fire retardants and for the improvement of this important functional property in SBS copolymers.


2021 ◽  
Author(s):  
Zhongyan Chen ◽  
Lepeng Chen ◽  
Shou-Feng Zhang ◽  
Qianqian Zhen ◽  
Wenzhang Xiong ◽  
...  

A nickel-catalyzed synthesis of 1,3-diaryl-6H-pyrazino[2,1-b]quinazolin-6-one was developed. This method enabled to access valuable pyrazino-fused quinazolinones with tolerance of many functional groups even at room temperature. The desired pyrazino-fused quinazolinones emit...


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Jerzy Chruściel ◽  
Marzena Fejdyś ◽  
Witold Fortuniak

Abstract New liquid branched poly(methylvinylborosiloxanes) (br-PMVBS) of random structure were synthesized in three steps. By reacting boric acid with an excess of dimethyldichlorosilane (Me2SiCl2) in dry ether a “borosiloxane precursor”: tris(chlorodimethylsilyl) borate B(OSiMe2Cl)3 was prepared. In the second step of synthesis ether solution of B(OSiMe2Cl)3 was added to a mixture of appropriate organic chlorosilanes (Me2SiCl2, MeViSiCl2, MeSiCl3, and Me3SiCl) and all reagents were reacted with stoichiometric amounts of water, in the presence of pyridine (as an acceptor of HCl), in dry ether, at low temperature (usually at -10 to 0 C). In order to fully react (“to block”) trace silanol groups, reactions of intermediate PMVBS with additional batches of Me3SiCl were carried out in the third step, C5H5N·HCl was filtered off and washed with a dry ether. The solvent was distilled off from filtrates and low molecular weight siloxane oligomers were removed by a vacuum distillation at 130-150 C. Chemical structures of br-PMVBS were confirmed by elemental analysis and spectroscopic methods (FTIR, emission atomic spectroscopy ICP-AES, and NMR: 1H, 29Si and 11B). On the basis of analysis of their 29Si-NMR spectra the microstructure of polysiloxane chains was proposed. The prepared br-PMVBS had in their structures: triple branching borosiloxane units: BO1.5 and in some cases methylsiloxane moiety CH3SiO1.5 (T). They contained linkages: Si-O-Si, Si-O-B, vinyl(methyl)siloxane functional groups (CH2=CH)MeSiO (Dvi), dimethylsiloxane mers (CH3)2SiO (D), and non-reactive trimethylsiloxy terminal groups (CH3)3SiO0.5 (M), but they did not have: hydroxyl functional groups: Si-OH and B-OH, and sensitive to water B-O-B linkages. Molecular weights of br-PMVBS (Mn = 1500-3300 g/mol; Mw = 3800-7400 g/mol) and their polydispersity (Mw/Mn = 2.0-2.5) were determined by a size exclusion chromatography (SEC).


2013 ◽  
Vol 52 (3) ◽  
pp. 388 ◽  
Author(s):  
Rachel Woods ◽  
Sonja Feldbacher ◽  
David Zidar ◽  
Gregor Langer ◽  
Valentin Satzinger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document