Plasticizer effect on the melting and crystallization behavior of polyvinyl alcohol

Polymer ◽  
2003 ◽  
Vol 44 (26) ◽  
pp. 8139-8146 ◽  
Author(s):  
Jyongsik Jang ◽  
Dong Kweon Lee
2018 ◽  
Vol 33 (2) ◽  
pp. 234-244 ◽  
Author(s):  
M. Shibutani ◽  
T. Yamamoto ◽  
K. Inoue ◽  
K. Tokumitsu

2019 ◽  
Vol 951 ◽  
pp. 21-25
Author(s):  
Achmad Chafidz ◽  
Sholeh Ma'mun ◽  
Haryanto ◽  
Wara Dyah Pita Rengga ◽  
Prima A. Handayani ◽  
...  

In this study, PP/clay nanocomposites have been fabricated at different nanoclay loadings, i.e. 0, 5, 10, and 5 wt% for the 1stcycle and 2ndcycle (re-processing). The prepared nanocomposites were then characterized by a Differential Scanning Calorimetry (DSC) to investigate the effects of nanoclay loadings and re-processing on the melting and crystallization of the nanocomposites. The DSC results showed that the melting temperature,Tmwas not significantly affected by the nanoclay loadings and re-processing. In the other hand, the degree of crystallinity,Xcof the nanocomposites was higher than that of neat PP, but only reached a maximum at nanoclay loading of 5 wt% (i.e. 51.2% for NC-5-I and 48.3% for NC-5-II). Thereafter, theXcdecreased at higher nanoclay loadings. There was no significant difference inXcbetween 1stcycle and 2ndcycle. Additionally, in all nanocomposites samples for both cycles, there were two crystallization temperatures, i.e.Tc1andTc2. In the overall crystallization process, theTcof nanocomposites increased by 11-12°C compared to that of neat PP. Whereas, the onset crystallization temperature,Tocalso increased by approx. 13°C. Apparently, there was no significant effect of nanoclay loadings and re-processing on theTcndTocof the nanocomposites.


2012 ◽  
Vol 531-532 ◽  
pp. 182-185
Author(s):  
Xiao Feng He ◽  
Shuai Wang ◽  
Tie Jun Ge ◽  
Xue Quan Zhang ◽  
Chun Yu Zhang

The melting and crystallization behaviors of Polypropylene/Syndiotactic1,2-polybutadiene (PP/s-PB) blends and neat PP were studied by using DSC, the results showed that the presence of s-PB in PP would have a strong impact on the crystallization capacity of PP. The presence of s-PB in PP could increase the crystallization temperature(Tc) of PP, and the s-PB could obviously lower supercooling temperature(Tm-Tc) of PP, but the s-PB in PP have a Slightly influence on the melting temperature(Tm) of PP. The proposed reason for those are that the crosslinking s-PB in high temperature is a nucleator for PP’s crystallization and increases PP’s crystalline rate. However, the s-PB lowers PP’s crystallinity. At the same time, the presence of PP in blends lowers s-PB’s crystallinity, but the PP in blends have a Slightly influence on the melting temperature(Tm) and crystallization temperature(Tc) of s-PB.


2012 ◽  
Vol 549 ◽  
pp. 322-326 ◽  
Author(s):  
Yong Chen ◽  
Qiang Dou

The effect of a nucleating agent (NT-C) on the crystallization behavior of poly(lactic acid) (PLA) was studied. The melting and crystallization behavior and spherulitic morphology of the nucleated PLA were investigated by means of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarized light microscopy (PLM). It is found that the crystallization temperature and crystallinity increase, the spherulitic size decrease for the nucleated PLA. But the crystal structure of the nucleated PLA is not changed.


2004 ◽  
Vol 94 (3) ◽  
pp. 839-844 ◽  
Author(s):  
Shu-Ling Zhang ◽  
Gui-Bin Wang ◽  
Zhen-Hua Jiang ◽  
Wei-Chun Wu ◽  
Rong-Tang Ma ◽  
...  

2006 ◽  
Vol 103 (5) ◽  
pp. 3353-3361 ◽  
Author(s):  
Weihua Zhou ◽  
Ming Lu ◽  
Junjun Zheng ◽  
Zishou Zhang ◽  
Kancheng Mai

Sign in / Sign up

Export Citation Format

Share Document