Supercritical carbon dioxide-assisted silanization of multi-walled carbon nanotubes and their effect on the thermo-mechanical properties of epoxy nanocomposites

Polymer ◽  
2014 ◽  
Vol 55 (16) ◽  
pp. 4156-4163 ◽  
Author(s):  
Danny Vennerberg ◽  
Ryan Hall ◽  
Michael R. Kessler
2018 ◽  
Vol 7 (4.36) ◽  
pp. 1149 ◽  
Author(s):  
Nguyen Tuan Anh ◽  
Nguyen Quang Tung ◽  
Bach Trong Phuc ◽  
Nguyen Xuan Canh

In this study, the flame retardants epoxy nanocomposites were prepared by combining mechanical stir and sonication of epoxy Epikote 240 (EE240) resin, chlorinated paraffin, atimony oxide, multi-walled carbon nanotubes (MWCNTs) and montmotillonite clay. Resultants of CNTs, montmorillonite and flame retardant additives were investigated limiting oxygen (LOI) and UL-94, combustion rate. The SEM, FE-SEM, TEM were measured to analyze the dispersion of MWCNTs and montmorillonite clay in epoxy matrix. The mechanical properties including tensile strength, compressive strength, flexural strength and impact strength Izod were studied. The results of testing burning and mechanical properties indicated that CNTs were more efficient than clay in improving the flame retardancy of materials. The dispersion method combining of mechanical stir and sonication is the good choice to distribute additive agents into epoxy matrix.  


2017 ◽  
Vol 883 ◽  
pp. 75-84 ◽  
Author(s):  
Nireeksha Karode ◽  
Laurence Fitzhenry ◽  
Siobhán Matthews ◽  
Philip Walsh ◽  
Austin Coffey

Medical tubing used in minimally invasive devices presents a number of design considerations depending on the material used, design requirements (such as sufficient stiffness, flexibility and biocompatibility) and processing conditions. Currently, manufacturing industries adopt co-extrusion systems to meet design specifications, by using multilayer configuration leading to higher cost per device and increased complexity. This paper investigates the mechanical performance of nanocomposites using supercritical carbon dioxide assisted polymer processing technique. The use of innovative medical compounds such as PEBAX graphene nanocomposites have resulted in measurable improvements in mechanical properties. This study also presents the effect of supercritical carbon dioxide on the mechanical and physical properties of the polymer matrix. The mechanical properties have been investigated using dynamic mechanical analysis (DMA) and mechanical tensile test, where sufficient reinforcement was observed depending on the composition of graphene within PEBAX matrix. ATR-FTIR was used to further analyze the effect of supercritical carbon dioxide and interactions within the polymer composite matrix.


Sign in / Sign up

Export Citation Format

Share Document