A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates and temperatures

Polymer ◽  
2014 ◽  
Vol 55 (25) ◽  
pp. 6577-6593 ◽  
Author(s):  
Peng Yu ◽  
Xiaohu Yao ◽  
Qiang Han ◽  
Shuguang Zang ◽  
Yabei Gu
2012 ◽  
Vol 79 (3) ◽  
Author(s):  
Harsha S. Bhat ◽  
Ares J. Rosakis ◽  
Charles G. Sammis

The micromechanical damage mechanics formulated by Ashby and Sammis, 1990, “The Damage Mechanics of Brittle Solids in Compression,” Pure Appl. Geophys., 133(3), pp. 489–521, and generalized by Deshpande and Evans 2008, “Inelastic Deformation and Energy Dissipation in Ceramics: A Mechanism-Based Constitutive Model,” J. Mech. Phys. Solids, 56(10), pp. 3077–3100. has been extended to allow for a more generalized stress state and to incorporate an experimentally motivated new crack growth (damage evolution) law that is valid over a wide range of loading rates. This law is sensitive to both the crack tip stress field and its time derivative. Incorporating this feature produces additional strain-rate sensitivity in the constitutive response. The model is also experimentally verified by predicting the failure strength of Dionysus-Pentelicon marble over strain rates ranging from ∼10− 6to 103s− 1. Model parameters determined from quasi-static experiments were used to predict the failure strength at higher loading rates. Agreement with experimental results was excellent.


2017 ◽  
Vol 35 (02) ◽  
pp. 145-152
Author(s):  
N. Gao ◽  
Z. Zhu ◽  
S. Xiao ◽  
Q. Xie

ABSTRACTThe study of the mechanical properties of polycrystalline alloy materials under dynamic impact, namely, the prediction of mechanical behavior after yield stress and the establishment of a constitutive model, has attracted much attention in the field of engineering. The stress-strain curves of 5083 aluminum alloy were obtained under strain rates varying from 0.0002 s-1 to 7130 s-1 through uniaxial compression experiments. The equipment used included a CRIMS RPL100 tester, Instron tester, and split Hopkinson test system. In addition, based on dislocation dynamics and the strengthening mechanism of metals, the plastic flow of the 5083 aluminum alloy was systematically analyzed under a wide range of strain rates. It was found that the abnormal yield behavior of the 5083 aluminum alloy under a wide range of strain rates increased, and the experimental phenomenon of hardening rate decreased with an increase in strain rate. This study also revealed that the abnormal yield behavior is caused by the different dislocation mechanisms of two-phase alloy elements under different strain rates. Based on the thermal activation theory and the experimental data, a constitutive model was developed. A comparison showed good agreement between the experimental and model curves. This indicates that this model has good plastic flow stress prediction ability for such types of materials.


2006 ◽  
Vol 306-308 ◽  
pp. 989-994 ◽  
Author(s):  
M. Nizar Machmud ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto

Based on previous available constitutive models, a phenomenological constitutive model has been constructed and is proposed to describe the strain, strain rate and temperature dependentdeformation behavior of PC/ABS blends. In this paper, four quasi-static uniaxial tension tests of a specimen tested at different strain rates and temperatures were used to identify the constitutive model constants. By using the proposed constitutive model, predicting the stress-strain behavior of the PC/ABS blend tested at certain strain rate and different temperatures compares well to the behavior exhibited from the tests. From comparison between the DSGZ and the proposed models, proposed model shows a better prediction. Evaluation of the proposed constitutive model was also presented and it has revealed that the proposed model might have a potential to be used for predicting a wide range of temperatures and high strain rates behavior of PC/ABS blends.


2013 ◽  
Vol 58 (4) ◽  
pp. 1105-1110 ◽  
Author(s):  
W. Moćko ◽  
Z.L. Kowalewski

Abstract In this paper, a new method for assessing the accuracy of a constitutive model is proposed. The method uses perforation test done by drop weight tower. The assessment is carried out by comparison of striker velocity curve obtained using experiment and FEM simulation. In order to validate proposed method the various constitutive equations were applied i.e. Johnson-Cook, Zerilli-Armstrong and the extended Rusinek-Klepaczko to model mechanical behaviour of X4CrMnN16-12 austenitic steel. The steel was characterized at wide range of strain and strain rates using servo-hydraulic testing machine and split Hopkinson pressure bar. The relative error calculated as a difference between measured and constitutive model based stress-strain curve was applied as a reference data (classic approach). Subsequently, it was compared with relative error determined on the basis of experimental and FEM calculated striker velocity (new approach). A good correlation between classic and a new method was found. Moreover, a new method of error assessment enables to validate constitutive equation in a wide range of strain rates and temperatures on the basis of a single experiment.


2021 ◽  
pp. 104498
Author(s):  
Yuntian Wang ◽  
Xiangguo Zeng ◽  
Huayan Chen ◽  
Xin Yang ◽  
Fang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document