Effect of different types of peroxides on rheological, mechanical, and morphological properties of thermoplastic vulcanizates based on natural rubber/polypropylene blends

2007 ◽  
Vol 26 (4) ◽  
pp. 537-546 ◽  
Author(s):  
Anoma Thitithammawong ◽  
Charoen Nakason ◽  
Kannika Sahakaro ◽  
Jacques Noordermeer
2020 ◽  
Vol 990 ◽  
pp. 262-266
Author(s):  
Prathumrat Nu-Yang ◽  
Atiwat Wiriya-Amornchai ◽  
Jaehoon Yoon ◽  
Chainat Saechau ◽  
Poom Rattanamusik

Thermoplastic vulcanizates or TPVs is a type of materials exhibiting excellent properties between thermoplastic and elastomer by combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. This research aims to study the effect of thermal aging on the morphology and mechanical properties of thermoplastic vulcanizates (TPVs) based on a mixture of natural rubber (NR) and polystyrene (PS). TPVs samples were prepared using the internal mixer at a mass ratio of NR/PS 70/30, 50/50, 30/70 and 0/100. Tensile properties and impact strength showed that when the amount of NR increased tends of impact strength and elongation at break increased but tends of tensile strength decreased. On the other hand, tends of tensile strength for thermal aging at 70°C for 3 days increased when the amount of PS increase. The blending ratio of NR / PS at 70/30 is the best. It gave a worthy increase from 19.94 MPa to be 25.56 MPa (28.18%).


2012 ◽  
Vol 626 ◽  
pp. 233-236 ◽  
Author(s):  
Boripat Sripornsawat ◽  
Charoen Nakason ◽  
Azizon Kaesaman

Thermoplastic elastomers (TPEs) based on natural rubber (NR)/co-polyamine (COPA) blends with different types of NR (i.e., unmodified NR, MNR, ENR-30 and ENR-50) were prepared using simple blend technique. Mechanical, elastic, oil resistant and morphological properties were investigated. The main objective was to prepare TPEs based on NR with good set property and oil resistance. It was found that the blends with modified NRs exhibited higher moduli, tensile strength, oil resistance and elastic properties than the blend with NR. This is due to higher interaction between functional groups of modified NRs (i.e., ENR and MNR) and COPA. Furthermore, the blends using modified NRs showed finer grain morphology than the blend with NR. This may be caused by higher interfacial adhesion between rubber phase and COPA matrix.


2017 ◽  
Vol 57 ◽  
pp. 107-114 ◽  
Author(s):  
Korn Taksapattanakul ◽  
Tulyapong Tulyapitak ◽  
Pranee Phinyocheep ◽  
Polphat Ruamcharoen ◽  
Jareerat Ruamcharoen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document