Numerical simulation and experimental verification of gas flow through packed beds

2005 ◽  
Vol 152 (1-3) ◽  
pp. 31-40 ◽  
Author(s):  
S. Natarajan ◽  
C. Zhang ◽  
C. Briens
2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


1995 ◽  
Vol 117 (1) ◽  
pp. 176-180
Author(s):  
Malcolm S. Taylor ◽  
Csaba K. Zoltani

Measurements of the resistance to flow through packed beds of inert spheres have been reported by a number of authors through relations expressing the coefficient of drag as a function of Reynolds number. A meta-analysis of the data using improved statistical methods is undertaken to aggregate the available experimental results. For Reynolds number in excess of 103 the relation log Fv = 0.49 + 0.90 log Re′ is shown to be a highly effective representation of all available data.


2019 ◽  
Vol 213 ◽  
pp. 02011
Author(s):  
Jan Česenek

The article is concerned with the numerical simulation of the compressible turbulent gas flow through the porous media using space-time discontinuous Galerkin method.The mathematical model of flow is represented by the system of non-stationary Reynolds-Averaged Navier-Stokes (RANS) equations. The flow through the porous media is characterized by the loss of momentum. This RANS system is equipped with two-equation k-omega turbulence model. The discretization of these two systems is carried out separately by the space-time discontinuous Galerkin method. This method is based on the piecewise polynomial discontinuous approximation of the sought solution in space and in time. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.


2018 ◽  
Vol 180 ◽  
pp. 02052
Author(s):  
Martin Kyncl ◽  
Jaroslav Pelant

Here we work with the RANS equations describing the non-stationary viscous compressible fluid flow. We focus on the numerical simulation of the flow through the porous media, characterized by the loss of momentum. Further we simulate the flow through the set of diffusible barriers. Here we analyze the modification of the Riemann problem with one-side initial condition, complemented with the Darcy’s law and added inertial loss. We show the computational results obtained with the own-developed code for the solution of the compressible gas flow.


10.2514/3.314 ◽  
1992 ◽  
Vol 6 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Chan-Hong Chung ◽  
Duen-Ren Jeng ◽  
Kenneth J. De Witt ◽  
Theo G. Keith

Sign in / Sign up

Export Citation Format

Share Document