ring pack
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

2020 ◽  
Vol 21 (6) ◽  
pp. 1569-1578
Author(s):  
Long Zhou ◽  
Guang Hua Sun ◽  
Ying Ying Guo ◽  
Min Li Bai

2020 ◽  
Author(s):  
Boris Zhmud ◽  
Eduardo Tomanik ◽  
Wieslaw Grabon ◽  
Dietmar Schorr ◽  
Boris Brodmann
Keyword(s):  

2020 ◽  
Vol 5 (3) ◽  
pp. 304-313
Author(s):  
Erjon Selmani ◽  
Arian Bisha

The combustion chamber is ought to be perfectly sealed, however, part of the air and fuel mixture can escape from it. Among the several losses there is the gas flow from the inter-ring crevices, which is always present. This leakage is known as blow-by, and affects efficiency, correct lubrication and emissions. The amount of leakage is dependent on many factors, and among the most important are the engine speed and load, which are able to affect the system through the forces applied on it. The aim of this paper was to understand in a more detailed way how the engine speed and load could affect the sealing efficiency of a ring-pack. For this purpose, a complete range of speeds and loads were used in the simulations. The equations of the ring motions and gas dynamics has been implemented and solved in ©Ricardo RINGPAK solver. The results showed that inertia and inter-ring gas pressures drives the sealing behavior of the rings. The blow-by trend showed to decrease with the speed and increase with the load, exception made for the idle condition where the values were different to the other cases, especially at higher speeds. Among the two parameters, the engine speed resulted to affect more significantly the blow-by trend.


2019 ◽  
Vol 13 (3) ◽  
pp. 5513-5527
Author(s):  
J. W. Tee ◽  
S. H. Hamdan ◽  
W. W. F. Chong

Fundamental understanding of piston ring-pack lubrication is essential in reducing engine friction. This is because a substantial portion of engine frictional losses come from piston-ring assembly. Hence, this study investigates the tribological impact of different piston ring profiles towards engine in-cylinder friction. Mathematical models are derived from Reynolds equation by using Reynolds’ boundary conditions to generate the contact pressure distribution along the complete piston ring-pack/liner conjunction. The predicted minimum film thickness is then used to predict the friction generated between the piston ring-pack and the engine cylinder liner. The engine in-cylinder friction is predicted using Greenwood and Williamson’s rough surface contact model. The model considers both the boundary friction and the viscous friction components. These mathematical models are integrated to simulate the total engine in-cylinder friction originating from the studied piston ring-pack for a complete engine cycle. The predicted minimum film thickness and frictional properties from the current models are shown to correlate reasonably with the published data. Hence, the proposed mathematical approach prepares a simplistic platform in predicting frictional losses of piston ring-pack/liner conjunction, allowing for an improved fundamental understanding of the parasitic losses in an internal combustion engine.


Author(s):  
Chunxing Gu ◽  
Di Zhang

This paper proposes an efficient numerical approach to predict the initial running-in process of piston ring pack/cylinder liner system. A combined mixed lubrication and wear model coupled with an oil transport model was developed. In order to predict the hydrodynamic pressure efficiently, two improved methodologies, including the Fischer-Burmsister-Newton-Schur (FBNS) approach and the Grid Refinement (GR) strategy, were adopted. Meanwhile, in order to take into account the effect of skewness, Weibull distribution function was adopted to characterize the asperity height distribution. Predicting the wear of cylinder liner was based on the Archard's wear law. The influences of asperity plastic deformation and wear on asperity height distribution were considered. The results show that the developed model can well predict the initial running-in behavior of piston ring pack/cylinder liner system under an engine-like condition.


Sign in / Sign up

Export Citation Format

Share Document