Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls

2017 ◽  
Vol 308 ◽  
pp. 214-234 ◽  
Author(s):  
A.I. Alsabery ◽  
A.J. Chamkha ◽  
H. Saleh ◽  
I. Hashim
2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Pamela Vocale ◽  
Gian Luca Morini ◽  
Marco Spiga

In this work, hydrodynamically and thermally fully developed gas flow through elliptical microchannels is numerically investigated. The Navier–Stokes and energy equations are solved by considering the first-order slip flow boundary conditions and by assuming that the wall heat flux is uniform in the axial direction, and the wall temperature is uniform in the peripheral direction (i.e., H1 boundary conditions). To take into account the microfabrication of the elliptical microchannels, different heated perimeter lengths are analyzed along the microchannel wetted perimeter. The influence of the cross section geometry on the convective heat transfer coefficient is also investigated by considering the most common values of the elliptic aspect ratio, from a practical point of view. The numerical results put in evidence that the Nusselt number is a decreasing function of the Knudsen number for all the considered configurations. On the contrary, the role of the cross section geometry in the convective heat transfer depends on the thermal boundary condition and on the rarefaction degree. With the aim to provide a useful tool for the designer, a correlation that allows evaluating the Nusselt number for any value of aspect ratio and for different working gases is proposed.


Sign in / Sign up

Export Citation Format

Share Document