Effects of particle size and wettability on froth stability in a collophane flotation system

2021 ◽  
Vol 379 ◽  
pp. 576-584
Author(s):  
Ji Fang ◽  
Yingyong Ge ◽  
Jun Yu
2017 ◽  
Vol 184 ◽  
pp. 240-247 ◽  
Author(s):  
A. Norori-McCormac ◽  
P.R. Brito-Parada ◽  
K. Hadler ◽  
K. Cole ◽  
J.J. Cilliers

Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 675
Author(s):  
Neymayer Pereira Lima ◽  
Klaydison Silva ◽  
Thiago Souza ◽  
Lev Filippov

The flotation has been successfully applied to process the iron ore for the particle size (Ps) from 10 µm up to 150 µm. The presence of the slimes (Ps < 10 µm) is harmful on the reverse flotation of quartz, so they are usually prior removed by hydrocyclones. The main effects of the presence of slimes on the flotation are related to the increase on reagents consumption, the froth stability, and decrease on the selectivity. The lower floatability of coarse quartz particles (+74 µm) combined with the presence of slimes, even in small quantities, drastically affect the flotation response. This paper shows a study of characterization of a typical iron ore slime, aiming to create a better understanding of its role on the concentration by flotation. The main characteristics of typical slimes from the Iron Ore Quadrangle in Brazil are the presence of almost 70% of hematite, 25% of quartz, and 5% of kaolinite, as the main silicates gangue minerals. Furthermore, the particle size distribution revealed that 80% of the hematite and the kaolinite are below 20 µm. The affinity between the ultrafine kaolinite of the slimes with the corn starch is harmful to the reverse flotation of quartz, as the starch has an important depressing action over the hematite. The presence of 20% of hematite −20 µm decreased the recovery to the froth of quartz + 74 µm from 97% to 62%, where the slimes coating seems to be the main responsible.


Author(s):  
Innocent Achaye ◽  
Jenny Wiese ◽  
Belinda McFadzean

Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Sooho Kim ◽  
M. J. D’Aniello

Automotive catalysts generally lose-agtivity during vehicle operation due to several well-known deactivation mechanisms. To gain a more fundamental understanding of catalyst deactivation, the microscopic details of fresh and vehicle-aged commercial pelleted automotive exhaust catalysts containing Pt, Pd and Rh were studied by employing Analytical Electron Microscopy (AEM). Two different vehicle-aged samples containing similar poison levels but having different catalytic activities (denoted better and poorer) were selected for this study.The general microstructure of the supports and the noble metal particles of the two catalysts looks similar; the noble metal particles were generally found to be spherical and often faceted. However, the average noble metal particle size on the poorer catalyst (21 nm) was larger than that on the better catalyst (16 nm). These sizes represent a significant increase over that found on the fresh catalyst (8 nm). The activity of these catalysts decreases as the observed particle size increases.


Wear ◽  
2020 ◽  
pp. 203579
Author(s):  
G. Haider ◽  
M. Othayq ◽  
J. Zhang ◽  
R.E. Vieira ◽  
S.A. Shirazi

Sign in / Sign up

Export Citation Format

Share Document