Effective and economical treatment of low-grade nickel laterite by a duplex process of direct reduction-magnetic separation & rotary kiln-electric furnace and its industrial application

Author(s):  
Hongyu Tian ◽  
Zhengqi Guo ◽  
Ruoning Zhan ◽  
Jian Pan ◽  
Deqing Zhu ◽  
...  
2013 ◽  
Vol 734-737 ◽  
pp. 1029-1032 ◽  
Author(s):  
Jiang An Chen ◽  
Jun Liu

Considered the properties of limonite ore at Jiangxi, the raw ore pressing ball - direct reduction - magnetic separation flowsheet have been adopted. the pressing ball conditions, the influence factors and the grinding magnetic separation conditions experiments were carried out. The results shown that: When the dosage of coal was 20%, water was 10%, CMC was 0.5%, pressing ball under the pressure of 190 kN, the calcination temperature was 1100 °C, the roasting time is 50 min, roasted ore were magnetic separated after grinded to 85% through 200 mesh screen. the iron concentrate grade of 92.48% and recovery rate of 93.45% were achieved finally.


2014 ◽  
Vol 21 (5) ◽  
pp. 1771-1777 ◽  
Author(s):  
Guo-lin Zheng ◽  
De-qing Zhu ◽  
Jian Pan ◽  
Qi-hou Li ◽  
Yue-ming An ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1340
Author(s):  
Guorui Qu ◽  
Shiwei Zhou ◽  
Huiyao Wang ◽  
Bo Li ◽  
Yonggang Wei

The production of ferronickel concentrate from low-grade nickel laterite ore containing 1.31% nickel (Ni) was studied by the non-melting reduction magnetic separation process. The sodium chloride was used as additive and coal as a reductant. The effects of roasting temperature, roasting duration, reductant dosage, additive dosage, and grinding time on the grade and recovery were investigated. The optimal reduction conditions are a roasting temperature of 1250 °C, roasting duration of 80 min, reductant dosage of 10%, additive dosage of 5%, and a grinding time of 12 min. The grades of nickel and iron are improved from 2.13% and 51.12% to 8.15% and 64.28%, and the recovery of nickel is improved from 75.40% to 97.76%. The research results show that the additive in favor of the phase changes from lizardite phase to forsterite phase. The additive promotes agglomeration and separation of nickel and iron.


Sign in / Sign up

Export Citation Format

Share Document