laterite ore
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 64)

H-INDEX

21
(FIVE YEARS 7)

Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2033
Author(s):  
Yuanbo Wang ◽  
Chaoqun Nie ◽  
Bo Li ◽  
Yonggang Wei

This study focused on the preparation of high-grade ferronickel concentrate, the behavior of efficient migration and the polymerization of ferronickel particles during reduction roasting, by adding calcium fluoride and a ferronickel concentrate to low-grade laterite ore from Yunnan. The effects of temperature, holding time, reductant content, ferronickel concentrate content and magnetic field intensity on the preparation of the ferronickel concentrate were studied and the optimum conditions were determined as follows: 30% ferronickel concentrate (metal Ni-4.68%, metal Fe-45.0%), 8% coal, 7% calcium fluoride, reduction temperature of 1250 °C, reduction time of 60 min and the intensity of magnetic separation is 150 mT. The proportion of nickel and iron in ferronickel concentrate was 88.7% (metal Ni-8.62%, metal Fe-80.1%), and the recovery efficiency of nickel and iron are 98.8% and 82.4%, respectively. X-ray diffraction and scanning electron microscopy indicated that ferronickel-concentrate, as an activating agent, improved the aggregation effect of ferronickel particles. The efficient migration and polymerization of ferronickel particles in the ore significantly increased the size of the ferronickel particles with additives, therefore a high-grade ferronickel concentrate was prepared, and the reduction and recovery efficiency of laterite nickel ore was improved.


2021 ◽  
Vol 174 ◽  
pp. 107277
Author(s):  
Ningjie Sun ◽  
Zhe Wang ◽  
Zhancheng Guo ◽  
Guangqing Zhang ◽  
Tao Qi

2021 ◽  
Vol 921 (1) ◽  
pp. 012029
Author(s):  
A A Husain ◽  
I Nur ◽  
Sufriadin ◽  
U R Irfan

Abstract The objective of this study is to analyze the mineralogy and geochemistry of garnierite and its implication for Ni laterite processing. Mineralogical analysis using optical microscopic and X-ray diffraction (XRD) methods were performed, whereas chemical composition was obtained by X-ray fluorescence (XRF) method. Genetically, Ni in laterite ore is associated with SiO2 and MgO and is not accompanied by the elements of Co, Fe, Cr, Al, Mn, and Ca. In this study, Ni-laterite ore has Ni content of 2.1%, SiO2 25.42%, S/M ratio 3.7, and Fe/Ni ratio 15.5, meaning that it is more suitable to be processed by pyrometallurgical route. However, there are some characters that still have to go through treatment, namely reducing of Fe from 32.63% to 20%, increasing MgO, and reducing SiO2 by blending. Result of mineralogical analysis shows that the dominant mineral is quartz (44.8%) and talc (38.85%) with small amount of lizardite (16.35%). The high content of quartz and talc and the low in lizardite of the Ni-laterite ore in the study area indicated that it is recommended for pyrometallurgical processing which is also in accordance with its geochemical characteristics.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1009
Author(s):  
Maria Economou-Eliopoulos ◽  
Magdalena Laskou ◽  
Demetrios Eliopoulos ◽  
Ifigeneia Megremi ◽  
Sofia Kalatha ◽  
...  

As the global energy sector is expected to experience a gradual shift towards renewable energy sources, access to special metals in known resources is of growing concern within the EU and at a worldwide scale. This is a review on the Fe–Ni ± Co-laterite deposits in the Balkan Peninsula, which are characterized by multistage weathering/redeposition and intense tectonic activities. The ICP-MS analyses of those laterites indicated that they are major natural sources of Ni and Co, with ore grading from 0.21 to 3.5 wt.% Ni and 0.03 to 0.31 wt.% Co, as well as a significant Sc content (average 55 mg/kg). The SEM-EDS analyses revealed that fine Fe-, Ni-, Co-, and Mn-(hydr)oxides are dominant host minerals and that the enrichment in these elements is probably controlled by the post-formation evolution of initial ore redeposition. The paucity of rare earth element (REE) within the typical Fe–Ni laterite ore and the preferential occurrence of Co (up to 0.31 wt.%), REE content (up to 6000 mg/kg ΣREE), and REE-minerals along with Ni, Co, and Mn (asbolane and silicates) towards the lowermost part of the Lokris (C. Greece) laterite ore suggest that their deposition is controlled by epigenetic processes. The platinum-group element (PGE) content in those Fe–Ni laterites, reaching up to 88 μg/kg Pt and 26 μg/kg Pd (up to 186 μg/kg Pd in one sample), which is higher than those in the majority of chromite deposits associated with ophiolites, may indicate important weathering and PGE supergene accumulation. Therefore, the mineralogical and geochemical features of Fe–Ni laterites from the Balkan Peninsula provide evidence for potential sources of certain critical metals and insights to suitable processing and metallurgical methods. In addition, the contamination of soil by heavy metals and irrigation groundwater by toxic Cr(VI), coupled with relatively high Cr(VI) concentrations in water leachates for laterite samples, altered ultramafic rocks and soils neighboring the mining areas and point to a potential human health risk and call for integrated water–soil–plant investigations in the basins surrounding laterite mines.


2021 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Wahab Wahab ◽  
Erwin Anshari ◽  
Marwan Zam Mili ◽  
WD. Rizky Awaliah Nafiu ◽  
Muh. Nuzul Khaq ◽  
...  

Leaching at atmospheric pressure is one of the leaching methods of concern because it has several advantages, namely that it can process low-level nickel ore, can operate at temperatures >100 ⁰C at atmospheric pressure, and can be used in saprolite and limonite ores. In this research, nickel extraction from nickel laterite ore was carried out using sulfuric acid solution (H2SO4) as a leaching agent. The variables that were varied in the leaching process were temperature (30, 60, and 90 ⁰C), sulfuric acid concentration (0.2, 0.5, and 0.8 molar) and leaching time (30, 60, and 90 minutes). In this study, a 3-factor analysis of variance (ANOVA) was used to see the significance of the variable effects and the order of the most influential variables. In addition, leaching kinetics was studied by shrinking core models to determine rate determining step. The results showed that the increase in temperature, sulfuric acid and leaching time produced a higher percentage of extracted nickel. Based on the 3-factor ANOVA, the order of the most influential variables was obtained, namely temperature, acid concentration and leaching time. The kinetics analysis showed that rate determining step of leaching ore nickel laterite with H2SO4 solution on atmospheric pressure is controlled by diffusion through solid layer product.Keywords: analysis of variance; leaching; saprolit; limonitA B S T R A KLeaching pada tekanan atmosfer adalah salah satu metode pelindian yang menjadi perhatian karena memiliki beberapa keuntungan yaitu dapat mengolah bijih nikel kadar rendah, dapat beroperasi pada temperatur >100 ⁰C pada tekanan atmosfer serta dapat digunakan pada bijih saprolit dan limonit. Dalam penelitian ini, dilakukan ekstraksi nikel dari bijih nikel laterit menggunakan larutan asam sulfat (H2SO4) sebagai agen pelindi. Variabel yang divariasikan dalam proses pelindian yaitu temperatur (30, 60, dan 90 ⁰C), konsentrasi asam sulfat (0,2; 0,5; dan 0,8 molar) dan waktu pelindian (30, 60, dan 90 menit). Dalam penelitian ini digunakan analysis of variance (ANOVA) 3 faktor untuk melihat signifikansi variabel dan urutan variabel yang paling berpengaruh. Selain itu, dilakukan studi kinetika pelindian menggunakan shrinking core model untuk mengetahui pengendali laju reaksi. Hasil penelitian menunjukkan bahwa peningkatan variabel temperatur, konsentrasi asam sulfat dan waktu pelindian menyebabkan meningkatnya persen ekstraksi nikel. Berdasarkan hasil ANOVA 3 faktor diperoleh urutan variabel yang paling berpengaruh yaitu temperatur, konsentrasi asam dan waktu pelindian. Hasil analisis kinetika menunjukkan bahwa pengendali laju reaksi pelindian bijih nikel laterit menggunakan larutan H2SO4 pada tekanan atmosfer yaitu difusi melalui lapisan produk padat.Kata kunci: analysis of variance; pelindian; limonit; saprolit


2021 ◽  
Vol 9 ◽  
Author(s):  
Shoujun Liu ◽  
Chao Yang ◽  
Song Yang ◽  
Zhongliang Yu ◽  
Zhao Wang ◽  
...  

Laterite ore is one of the important sources of nickel (Ni). However, it is difficult to liberate Ni from ore structure during reduction roasting. This paper provided an effective way for a robust recovery of Ni from laterite ore by H2 reduction using sodium thiosulfate (Na2S2O3) as a promoter. . It was found that a Ni content of 9.97% and a Ni recovery of 99.24% were achieved with 20 wt% Na2S2O3 at 1,100°C. The promoting mechanism of Na2S2O3 in laterite ore reduction by H2 was also investigated. The thermogravimetric results suggested the formation of Na2Mg2SiO7, Na2SO3, Na2SO4, and S during the pyrolysis of laterite with Na2S2O3, among which the alkali metal salts could destroy the structures of nickel-bearing silicate minerals and hence release Ni, while S could participate in the formation of the low-melting-point eutectic phase of FeS-Fe. The formation of low-melting-point phases were further verified by the morphology analysis, which could improve the aggregation of Ni-Fe particles due to the capillary forces of FeS-Fe as well as the enhanced element migration by the liquid phase of sodium silicates during reduction.


Author(s):  
Janneth Ruiz ◽  
Antonio Ardila ◽  
Bernardo Rueda ◽  
Jorge Echeverri ◽  
Daniel Quintero ◽  
...  

Abstract Nickel is essential in many consumer, industrial, military, transport, aerospace, marine, and architectural products due to its outstanding physical and chemical properties. This work focuses on the calcination and pre-reduction of laterite nickel ore to produce ferronickel. Ferronickel is an alloy containing nickel (about 30% wt.) and iron used for manufacturing stainless steel. Calcination and pre-reduction entail removing chemically bonded water from partially dried ore and removing oxygen from mineral oxides in the calcine. Here we combine a proprietary database with operation data of two rotary kilns and model predictions of Mean Residence Time, shell losses, intraparticle evaporation, and intraparticle temperature distribution. The kilns feature notable differences in length, inclination angle, excess air, but the predicted Mean Residence Times are similar. A fitted profile of experimental solids bed temperature represented particles surface temperature. The model considered slab-like mineral particles with surface-to-center distances of 13, 25, and 38 mm. Results show notable differences in the drying zone length and average surface-to-center temperature differences. Surface-to-center distances higher than 25 mm result in average surface-to-center temperature differences higher than 80°C. The following steps are improvements in the particle model and its coupling with the gas and wall temperature profiles.


2021 ◽  
pp. 105622
Author(s):  
Janaka Jayamini Wijenayake ◽  
So-Yeong Lee ◽  
Sung-Hun Park ◽  
Ho-Sang Sohn

2021 ◽  
Vol 57 (3) ◽  
pp. 61-72
Author(s):  
Xiaoshuang Guo ◽  
Chengyan Xu ◽  
Yingshuo Wang ◽  
Xiaohui Li ◽  
Tichang Sun

Sign in / Sign up

Export Citation Format

Share Document