A study of the design and arrangement of flights in a rotary drum

Author(s):  
Jeniffer C. Silveira ◽  
Rondinelli M. Lima ◽  
Rodolfo J. Brandao ◽  
Claudio R. Duarte ◽  
Marcos A.S. Barrozo
Keyword(s):  
2021 ◽  
Author(s):  
Adrian Hornby ◽  
Ulrich Kueppers ◽  
Benedikt Maurer ◽  
Carina Poetsch ◽  
Donald Dingwell

<p>Pyroclastic density currents (PDCs) present perhaps the greatest proximal primary hazard of volcanic activity and produce abundant fine ash that can present a range of health, environment and infrastructure hazards. However, direct, fully quantitative observation of ash production in PDCs is lacking, and little direct evidence exists to constrain the parameters controlling ash generation in PDCs. Here, we use an experimental approach to investigate the effects of starting mass, material density and ash removal on the efficiency of ash generation and concurrent clast rounding in the dense basal flow of PDCs. We employ a rotary drum to tumble pumice and scoria lapilli clasts over multiple transport “distance” steps (from 0.2 to 6 km). We observe increased ash generation rates with the periodic removal of ash during the experiments and with increasing starting mass. By scaling to the bed height and clast diameter we obtain a general description for ash production in all experiments as a function of flow distance, bed height and average clast diameter. We confirm that changes in lapilli shape factors correlate with the ash fraction generated and that the grain size of ash produced decreases with distance. Finally, we estimate shear rate in our experiments and calculate the inertial number, which describes the ratio between clast-scale and flow-scale rearrangement during flow. We show that, under certain conditions, fractional ash production can be calculated accurately for any starting mass solely as a function of the inertial number and the flow distance. This work sheds light on some of the first systematic and generalizable experimental parameterizations of ash production and associated clast evolution in PDCs and should advance our ability to understand flow mobility and associated hazards.</p>


2021 ◽  
Author(s):  
Sandeep Mishra ◽  
Kunwar D Yadav

Abstract For in-vessel composting of garden waste, the selection of reactor is an important factor for efficient degradation. The present study evaluates working performance of rotary drum reactor (RDR) and aerated in-vessel (AIV) for composting of garden waste. 100 kg garden waste was mixed with 10 kg cow-dung slurry and 5 kg compost and feed into both the reactors for 45 days composting period. The reactors vary in their system configuration, shape and orientation, blade design, rate of aeration, odour control, leachate production and energy requirements. Rotary drum was rotated daily six times in clockwise and anti-clockwise direction and AIV was rotated daily for 3–5 minutes using motor. Rise in temperature started within 24 hours of composting and reached 65°C and 59°C on second day itself and thermophilic phase continued for 7 and 5 days for RDR and AIV respectively. Moisture content reduction after composting period was 15.25 and 18.45 %, C/N ratio was 16.14 and 13.33, TVS reduction was 23.74 and 29.78 % and CO2 evolution rate was 6.18 and 4.14 mg/g VS/day in RDR and AIV respectively. Reduction of hemicellulose, cellulose, and lignin was more in AIV. The percentage reduction of acid insoluble lignin was 36.10 and 29.01 % and the percentage reduction of acid soluble lignin was 48.85 and 43.3% in in AIV and RDR respectively after 45 days. AIV gave better performance for composting of garden waste.


2001 ◽  
Vol 64 (6) ◽  
pp. 802-806 ◽  
Author(s):  
T. FU ◽  
D. STEWART ◽  
K. REINEKE ◽  
J. ULASZEK ◽  
J. SCHLESSER ◽  
...  

Numerous outbreaks of foodborne illness have been linked to the consumption of raw sprouts. Sprout producers have been advised by the Food and Drug Administration to include microbiological testing of spent irrigation water during production as part of an overall strategy to enhance the safety of sprouts. Alfalfa sprouts and irrigation water were analyzed to show the feasibility of using irrigation water for monitoring the microbiological safety of sprouts. Sprouts and water were produced and harvested from both commercial-scale (rotary drum) and consumer-scale (glass jars) equipment. Rapid increases of aerobic mesophiles occurred during the first 24 h of sprouting, with maximum levels achieved after 48 to 72 h. The counts in irrigation water were on average within approximately 1 log of their respective counts in the sprouts. Similar results were obtained for analysis of Escherichia coli O157:H7 in irrigation water and sprouts grown from artificially inoculated seeds. Testing of spent irrigation water indicated the contamination status of alfalfa sprouts grown from seeds associated with outbreaks of Salmonella infection.


1980 ◽  
Vol 13 (9) ◽  
pp. 355-361
Author(s):  
P.E. Modén ◽  
T. Nybrant
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document