Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze craton, China: Implications for geodynamic events

2016 ◽  
Vol 279 ◽  
pp. 37-56 ◽  
Author(s):  
Xingfu Jiang ◽  
Songbai Peng ◽  
Ali Polat ◽  
Timothy Kusky ◽  
Lu Wang ◽  
...  
2016 ◽  
Vol 90 (s1) ◽  
pp. 201-201
Author(s):  
Hao DENG ◽  
Timothy KUSKY ◽  
Songbai PENG ◽  
Lu WANG ◽  
Xingfu JIANG ◽  
...  

2017 ◽  
Vol 155 (6) ◽  
pp. 1263-1276 ◽  
Author(s):  
XIAO-FEI QIU ◽  
XIAO-MING ZHAO ◽  
HONG-MEI YANG ◽  
SHAN-SONG LU ◽  
NIAN-WEN WU ◽  
...  

AbstractPalaeoproterozic metasedimentary rocks, also referred to as khondalites, characterized by Al-rich minerals, are extensively exposed in the nucleus of the Yangtze craton, South China block. Samples of garnet–sillimanite gneiss in the khondalite suite were collected from the Kongling complex for Nd isotopic and elemental geochemical study. These rocks are characterized by variable SiO2 contents ranging from 35.71 to 58.07 wt%, and have low CaO (0.45–0.84 wt%) but high Al2O3 (18.56–29.04 wt%), Cr (174–334 ppm) and Ni (42.5–153 ppm) contents. They have high CIW (Chemical Index of Weathering) values (90.4–94.7), indicating intense chemical weathering of the source material. The samples display light rare earth elements (LREE) enrichment with negative Eu anomalies (Eu/Eu*=0.40–0.68), and have flat heavy rare earth elements (HREE) patterns. The high contents of transition elements (e.g. Cr, Ni, Sc, V) and moderately radiogenic Nd isotopic compositions suggest that the paragneisses might be those of first-cycle erosion products of predominantly mafic rocks mixing with small amounts of felsic moderately evolved Archaean crustal source. Geochemical and Nd isotopic compositions reveal that at least some of the protoliths of Kongling khondalite were sourced from local pre-existing mafic igneous rocks in a continental arc tectonic setting. Combined with documented zircon U–Pb geochronological data, we propose that the Palaeoproterozoic high-pressure granulite-facies metamorphism, rapid weathering, erosion and deposition of the khondalites in the interior of the Yangtze craton might be related to a Palaeoproterozoic collisional orogenic event during 2.1–1.9 Ga, consistent with the worldwide contemporary orogeny, implying that the Yangtze craton may have been an important component of the Palaeoprotorozoic Columbia supercontinent.


Author(s):  
Adam A. Garde ◽  
Brian Chadwick ◽  
John Grocott ◽  
Cees Swager

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Garde, A. A., Chadwick, B., Grocott, J., & Swager, C. (1997). Metasedimentary rocks, intrusions and deformation history in the south-east part of the c. 1800 Ma Ketilidian orogen, South Greenland: Project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 60-65. https://doi.org/10.34194/ggub.v176.5063 _______________ The south-east part of the c. 1800 Ma Ketilidian orogen in South Greenland (Allaart, 1976) is dominated by strongly deformed and variably migmatised metasedimentary rocks known as the ‘Psammite and Pelite Zones’ (Chadwick & Garde, 1996); the sediments were mainly derived from the evolving Julianehåb batholith which dominates the central part of the orogen. The main purpose of the present contribution is to outline the deformational history of the Psammite Zone in the region between Lindenow Fjord and Kangerluluk (Fig. 2), investigated in 1994 and 1996 as part of the SUPRASYD project (Garde & Schønwandt, 1995 and references therein; Chadwick et al., in press). The Lindenow Fjord region has high alpine relief and extensive ice and glacier cover, and the fjords are regularly blocked by sea ice. Early studies of this part of the orogen were by boat reconnaissance (Andrews et al., 1971, 1973); extensive helicopter support in the summers of 1992 and 1994 made access to the inner fjord regions and nunataks possible for the first time.A preliminary geological map covering part of the area between Lindenow Fjord and Kangerluluk was published by Swager et al. (1995). Hamilton et al. (1996) have addressed the timing of sedimentation and deformation in the Psammite Zone by means of precise zircon U-Pb geochronology. However, major problems regarding the correlation of individual deformational events and their relationship with the evolution of the Julianehåb batholith were not resolved until the field work in 1996. The SUPRASYD field party in 1996 (Fig. 1) was based at the telestation of Prins Christian Sund some 50 km south of the working area (Fig. 2). In addition to base camp personnel, helicopter crew and the four authors, the party consisted of five geologists and M.Sc. students studying mafic igneous rocks and their mineralisation in selected areas (Stendal et al., 1997), and a geologist investigating rust zones and areas with known gold anomalies.


2019 ◽  
Author(s):  
William A. Matthews ◽  
◽  
Marie-Pier Boivin ◽  
Kirsten Sauer ◽  
Daniel S. Coutts

Sign in / Sign up

Export Citation Format

Share Document