Mechanism study on microgroove forming by ultrasonic vibration assisted hot pressing

2016 ◽  
Vol 46 ◽  
pp. 270-277 ◽  
Author(s):  
Jiaqing Xie ◽  
Tianfeng Zhou ◽  
Yang Liu ◽  
Tsunemoto Kuriyagawa ◽  
Xibin Wang
2019 ◽  
Vol 58 (11) ◽  
pp. 115503 ◽  
Author(s):  
Hui Wang ◽  
Zhenyan Chen ◽  
Youming Chen ◽  
Mingjie Xie ◽  
Lin Hua

2020 ◽  
Vol 50 ◽  
pp. 520-527 ◽  
Author(s):  
Xiaofeng Zhang ◽  
Lin Yang ◽  
Yan Wang ◽  
Bin Lin ◽  
Yinghuai Dong ◽  
...  

Author(s):  
Hui Wang ◽  
Haiping Xiang ◽  
Xufei Hao ◽  
Zhenghua Meng ◽  
Lin Hua

Author(s):  
T. E. Mitchell ◽  
P. B. Desch ◽  
R. B. Schwarz

Al3Zr has the highest melting temperature (1580°C) among the tri-aluminide intermetal1ics. When prepared by casting, Al3Zr forms in the tetragonal DO23 structure but by rapid quenching or by mechanical alloying (MA) it can also be prepared in the metastable cubic L12 structure. The L12 structure can be stabilized to at least 1300°C by the addition of copper and other elements. We report a TEM study of the microstructure of bulk Al5CuZr2 prepared by hot pressing mechanically alloyed powder.MA was performed in a Spex 800 mixer using a hardened steel container and balls and adding hexane as a surfactant. Between 1.4 and 2.4 wt.% of the hexane decomposed during MA and was incorporated into the alloy. The mechanically alloyed powders were degassed in vacuum at 900°C. They were compacted in a ram press at 900°C into fully dense samples having Vickers hardness of 1025. TEM specimens were prepared by mechanical grinding followed by ion milling at 120 K. TEM was performed on a Philips CM30 at 300kV.


1998 ◽  
Vol 77 (4) ◽  
pp. 1033-1037 ◽  
Author(s):  
Y. Park, S. A. Song H., G. Kim

2019 ◽  
Author(s):  
Huaimin Wang ◽  
Zhaoqianqi Feng ◽  
Weiyi Tan ◽  
Bing Xu

<p>Selectively targeting cell nucleolus remains a challenge. Here we report the first case that D-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A D-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin dependent endocytosis and mainly accumulate at cell nucleolus. Structural analogue of the D-peptide reveals that particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. Contrasting to those of the D-peptide, the assemblies of the corresponding L-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the D-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of D-peptides for targeting subcellular organelles.</p>


2014 ◽  
Vol 56 (3) ◽  
pp. 213-217 ◽  
Author(s):  
Serkan Islak ◽  
Durmuş Kır ◽  
Halis Çelik

Sign in / Sign up

Export Citation Format

Share Document