scholarly journals An experimental study of the white layer formation during cryogenic assisted hard machining of AISI 52100 steel

Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 223-226 ◽  
Author(s):  
Guang-Chao Nie ◽  
Xiao-Ming Zhang ◽  
Dong Zhang ◽  
Han Ding
Author(s):  
Sangil Han ◽  
Shreyes N. Melkote

This paper describes an experimental investigation of the role of alloying, carbon content, and heat treatment on white layer formation in machining of steels. This is carried out by machining steels that differ in alloying, heat treatment and carbon content, via orthogonal cutting tests performed with low CBN content tools. The thickness of white layer produced in AISI 1045 and AISI 4340 annealed steels are compared to determine the effect of alloying on white layer formation. The effect of heat treatment on white layer formation is investigated by machining annealed and hardened AISI 4340 steels. The effect of carbon content on white layer formation is investigated by cutting AISI 52100 and AISI 4340 steels of the same hardness (53 HRC). Since 52100 steel has almost twice the amount of carbon and less number of alloying elements than AISI 4340 steel, an approximate understanding of the effect of carbon content on white layer formation can be inferred. The results of the study show that alloying, heat treatment, and carbon content influence white layer formation. The possible roles of the maximum workpiece surface temperature, effective plastic strain and stress on white layer formation in the different steels are also analyzed via finite element simulations performed in a commercially available code.


2014 ◽  
Vol 214 (6) ◽  
pp. 1293-1300 ◽  
Author(s):  
S.B. Hosseini ◽  
T. Beno ◽  
U. Klement ◽  
J. Kaminski ◽  
K. Ryttberg

2010 ◽  
Vol 431-432 ◽  
pp. 241-244 ◽  
Author(s):  
Bao Yun Qi ◽  
Ning He ◽  
Liang Li ◽  
Wei Zhao

It is commonly believed that the white layer formed during hard machining of steels is caused primarily by a thermally induced phase transformation resulting from rapid heating and quenching. The focus of this study is to investigate the white layers produced on the machined surfaces and on the inner side part of the chips in dry hard turning GCr15 with PCBN tools. Samples of machined workpiece and chips were metallographically processed and observed under a microscope to determine whether white layers were present or not. Some properties of white layers were deduced in order to verify some of the prevalent theories. More specifically, chip shapes were studied to determine how they developed during machining with potential appearance of white layers, with a view to correlating the chip shapes with the white layer formation.


Sign in / Sign up

Export Citation Format

Share Document