A descriptive phenomenological model for white layer formation in hard turning of AISI 52100 bearing steel

2021 ◽  
Vol 32 ◽  
pp. 299-310
Author(s):  
S.B. Hosseini ◽  
U. Klement
2014 ◽  
Vol 214 (6) ◽  
pp. 1293-1300 ◽  
Author(s):  
S.B. Hosseini ◽  
T. Beno ◽  
U. Klement ◽  
J. Kaminski ◽  
K. Ryttberg

Author(s):  
Xiao-Ming Zhang ◽  
Xin-Da Huang ◽  
Li Chen ◽  
Jürgen Leopold ◽  
Han Ding

This technical brief is the extension of our previous work developed by Zhang et al. (2016, “Effects of Process Parameters on White Layer Formation and Morphology in Hard Turning of AISI52100 Steel,” ASME J. Manuf. Sci. Eng., 138(7), p. 074502). We investigated the effects of sequential cuts on microstructure alteration in hard turning of AISI52100 steel. Samples undergone five sequential cuts are prepared with different radial feed rates and cutting speeds. Optical microscope and X-ray diffraction (XRD) are employed to analyze the microstructures of white layer and bulk materials after sequential cutting processes. Through the studies we first find out the increasing of white layer thickness in the sequential cuts. This trend in sequential cuts does work for different process parameters, belonging to the usually used ones in hard turning of AISI52100 steel. In addition, we find that the white layer thickness increases with the increasing of cutting speed, as recorded in the literature. To reveal the mechanism of white layer formation, XRD measurements of white layers generated in the sequential cuts are made. As a result retained austenite in white layers is identified, which states that the thermally driven phase transformations dominate the white layer formation, rather than the severe plastic deformation in cuts. Furthermore, retained austenite contents in sequential cuts with different process parameters are discussed. While using a smaller radial feed rate, the greater retained austenite content found in experiments is attributed to the generated compressive surface residual stresses, which possibly restricts the martensitic transformation.


Author(s):  
Xiao-Ming Zhang ◽  
Li Chen ◽  
Han Ding

Hard turning is becoming increasingly considered by industry as a potential substitute for grinding. However, it is greatly hurdled by surface integrity problems such as tensile residual stress and white layer, which are generally found to have negative effects on the stress corrosion, wear resistance, and fatigue life of the machined parts. This paper investigates white layer formation and morphology in hard turning process using various process parameters, taking into account the effects of heat treatment which results in microstructure and hardness differences on bulk materials. Samples undergone three typical heat treatment processes are prepared and then machined using different cutting speeds and radial feed rates. Optical microscope, scanning electron microscope (SEM), and X-ray diffraction (XRD) are employed to analyze the microstructures of white layer and bulk materials after varies heat treatments and cutting processes. Through the studies, we find the existence of a cutting speed threshold, below which no white layer forms for both the low and medium-temperature tempering. The threshold value increases; however, the white layer thickness decreases under the same cutting conditions, for the low and medium-temperature tempering, respectively. Also, we find that the white layer thickness and the scattering of it along the cutting direction on the surface increases with cutting speed and radial feed rate. White layer with wavy morphology can be found in samples after quenching at high cutting speed. We first discover that the pitch of the white layer with wavy morphology is similar to the displacement of tool at the time a segment of the serrated chips forms. Also, the surface residual stresses of the samples are measured. Relationship between white layer and residual stresses is presented. Based on the relationship we reveal that high temperature is more dominant than volume expansion for white layer formation.


Author(s):  
Sangil Han ◽  
Shreyes N. Melkote

This paper describes an experimental investigation of the role of alloying, carbon content, and heat treatment on white layer formation in machining of steels. This is carried out by machining steels that differ in alloying, heat treatment and carbon content, via orthogonal cutting tests performed with low CBN content tools. The thickness of white layer produced in AISI 1045 and AISI 4340 annealed steels are compared to determine the effect of alloying on white layer formation. The effect of heat treatment on white layer formation is investigated by machining annealed and hardened AISI 4340 steels. The effect of carbon content on white layer formation is investigated by cutting AISI 52100 and AISI 4340 steels of the same hardness (53 HRC). Since 52100 steel has almost twice the amount of carbon and less number of alloying elements than AISI 4340 steel, an approximate understanding of the effect of carbon content on white layer formation can be inferred. The results of the study show that alloying, heat treatment, and carbon content influence white layer formation. The possible roles of the maximum workpiece surface temperature, effective plastic strain and stress on white layer formation in the different steels are also analyzed via finite element simulations performed in a commercially available code.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Ajay Chavan ◽  
Vikas Sargade

AISI 52100 hardened bearing steel is popular in many industrial applications due to its excellent wear resistance and high strength. Therefore, a high level of surface integrity of the same is the utmost important requirement to enhance fatigue life. Machining of hardened AISI 52100 steel is difficult because severe plastic deformation and generation of high temperature alter the surface metallurgy of the machined component and hamper the tool life. The present investigation includes a comparative analysis of surface integrity of AISI 52100 bearing steel during hard turning under different near-dry environments, namely, dry, Minimum Quantity Cooling and Lubrication (MQCL), Compressed Chilled Air by Vortex Tube (CCAVT), and Hybrid Nanofluid Minimum Quantity Cooling and Lubrication (Hybrid NF-MQCL). Soyabean (a vegetable) oil is used as cutting fluid in MQCL and base fluid in Hybrid NF-MQCL environments. To prepare hybrid nanofluid, two different nanoparticles Al2O3 and MWCNT, are used. The chilled air is generated through a vortex tube. The surface integrity of AISI 52100 steel was studied in terms of microhardness, the thickness of the white layer, surface roughness (Ra), and residual stresses. Higher cutting speed and feed show positive and negative correlation on surface integrity of AISI 52100 steel, respectively. Hybrid nanofluid MQCL exhibits the lowest surface roughness (0.34 μm), microhardness (625 Hv0.1), compressive residual stresses (−168 MPa), and thin white layer (0.9 μm) in contrast, and dry machining shows higher surface roughness, microhardness, tensile residual stress, and thick white layer. In comparison, MQCL and CCAVT are found to be intermediate. It is found that hybrid nanofluid MQCL enhances the overall performance of the machined surface as compared to other near-dry techniques.


Sign in / Sign up

Export Citation Format

Share Document