scholarly journals Dissolution of Iron-chromium Carbides during White Layer Formation Induced by Hard Turning of AISI 52100 Steel

Procedia CIRP ◽  
2014 ◽  
Vol 14 ◽  
pp. 107-112 ◽  
Author(s):  
S.B. Hosseini ◽  
R. Dahlgren ◽  
K. Ryttberg ◽  
U. Klement
2014 ◽  
Vol 214 (6) ◽  
pp. 1293-1300 ◽  
Author(s):  
S.B. Hosseini ◽  
T. Beno ◽  
U. Klement ◽  
J. Kaminski ◽  
K. Ryttberg

Author(s):  
Xiao-Ming Zhang ◽  
Xin-Da Huang ◽  
Li Chen ◽  
Jürgen Leopold ◽  
Han Ding

This technical brief is the extension of our previous work developed by Zhang et al. (2016, “Effects of Process Parameters on White Layer Formation and Morphology in Hard Turning of AISI52100 Steel,” ASME J. Manuf. Sci. Eng., 138(7), p. 074502). We investigated the effects of sequential cuts on microstructure alteration in hard turning of AISI52100 steel. Samples undergone five sequential cuts are prepared with different radial feed rates and cutting speeds. Optical microscope and X-ray diffraction (XRD) are employed to analyze the microstructures of white layer and bulk materials after sequential cutting processes. Through the studies we first find out the increasing of white layer thickness in the sequential cuts. This trend in sequential cuts does work for different process parameters, belonging to the usually used ones in hard turning of AISI52100 steel. In addition, we find that the white layer thickness increases with the increasing of cutting speed, as recorded in the literature. To reveal the mechanism of white layer formation, XRD measurements of white layers generated in the sequential cuts are made. As a result retained austenite in white layers is identified, which states that the thermally driven phase transformations dominate the white layer formation, rather than the severe plastic deformation in cuts. Furthermore, retained austenite contents in sequential cuts with different process parameters are discussed. While using a smaller radial feed rate, the greater retained austenite content found in experiments is attributed to the generated compressive surface residual stresses, which possibly restricts the martensitic transformation.


Wear ◽  
2012 ◽  
Vol 286-287 ◽  
pp. 98-107 ◽  
Author(s):  
A. Attanasio ◽  
D. Umbrello ◽  
C. Cappellini ◽  
G. Rotella ◽  
R. M'Saoubi

Author(s):  
Xiao-Ming Zhang ◽  
Li Chen ◽  
Han Ding

Hard turning is becoming increasingly considered by industry as a potential substitute for grinding. However, it is greatly hurdled by surface integrity problems such as tensile residual stress and white layer, which are generally found to have negative effects on the stress corrosion, wear resistance, and fatigue life of the machined parts. This paper investigates white layer formation and morphology in hard turning process using various process parameters, taking into account the effects of heat treatment which results in microstructure and hardness differences on bulk materials. Samples undergone three typical heat treatment processes are prepared and then machined using different cutting speeds and radial feed rates. Optical microscope, scanning electron microscope (SEM), and X-ray diffraction (XRD) are employed to analyze the microstructures of white layer and bulk materials after varies heat treatments and cutting processes. Through the studies, we find the existence of a cutting speed threshold, below which no white layer forms for both the low and medium-temperature tempering. The threshold value increases; however, the white layer thickness decreases under the same cutting conditions, for the low and medium-temperature tempering, respectively. Also, we find that the white layer thickness and the scattering of it along the cutting direction on the surface increases with cutting speed and radial feed rate. White layer with wavy morphology can be found in samples after quenching at high cutting speed. We first discover that the pitch of the white layer with wavy morphology is similar to the displacement of tool at the time a segment of the serrated chips forms. Also, the surface residual stresses of the samples are measured. Relationship between white layer and residual stresses is presented. Based on the relationship we reveal that high temperature is more dominant than volume expansion for white layer formation.


Author(s):  
Guang-Chao Nie ◽  
Ke Zhang ◽  
Jose Outeiro ◽  
Serafino Caruso ◽  
Domenico Umbrello ◽  
...  

Abstract White layer (WL) formation in metal cutting is generally found to have negative effects on the corrosion and fatigue life of machined components. Nowadays, the mechanism of the WL formation has not been understood very well, especially about the contribution of the thermal and mechanical loadings generated by the cutting process on WL formation. The relationship between subsurface plastic strain caused by mechanical loadings and the formation of WLs is of our concern. To address this issue, WL formation in hard turning of AISI 52100 under dry and cryogenic cooling conditions is investigated by subsurface plastic strain measurement using the micro-grid technique, observed by scanning electron microscope (SEM). Due to the considerable low temperature, WL is mainly generated by the mechanical effect rather than the thermal one, and this hypothesis is supported by physically based finite element method (FEM) simulations. From the investigations, we discover the existing plastic strain threshold, which governs the occurrence of WL in hard turning of AISI 52100 steel under cryogenic cooling conditions.


Sign in / Sign up

Export Citation Format

Share Document