scholarly journals Life Cycle Assessment (LCA) of BEV’s environmental benefits for meeting the challenge of ICExit (Internal Combustion Engine Exit)

2021 ◽  
Vol 7 ◽  
pp. 1203-1216
Author(s):  
Ge Zheng ◽  
Zhijun Peng
2019 ◽  
Vol 118 ◽  
pp. 02010 ◽  
Author(s):  
Ningning Ha

In China, the growth of new energy vehicles is especially rapid and the explosive growth of the automobile brought an increasing impact on the environment. This paper selected Electric Vehicles, Hybrid Vehicles and Internal Combustion Engine Vehicles of the same model of BYD as the object. We established a Life Cycle Assessment with GaBi6 software and CML2001 model. The results show that in the whole life cycle, the influences of ADP, GWP and ODP of Electric Vehicles are less than that of Hybrid Vehicles and Internal Combustion Engine Vehicles. The impact of Electric Vehicles are 39%, 50%, and 4% of the Internal Combustion Engine Vehicles and the Hybrid Vehicles’ impact are 65%, 78% and 85% of the Internal Combustion Engine Vehicles. Electric Vehicles and Hybrid Vehicles have a clear improvement in these three types of impacts. The comparison results of AP, EP, FAETP, MAETP and POCP show that the potential impact of Electric Vehicles is greater than that of Hybrid Vehicles and Internal Combustion Engine Vehicles. At present, improving production technology and reducing the consumption of energy during production phase are effective measures to reduce the environmental impact of Internal Combustion Engine Vehicles and Hybrid Vehicles of China.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4942
Author(s):  
Resmond L. Reaño ◽  
Victor Antonio N. de Padua ◽  
Anthony B. Halog

This study assessed the environmental performance and energy efficiency of electricity generation from rice straw using a combined gasification and internal combustion engine (G/ICE). A life cycle assessment (LCA) was performed to consider the conversion to electricity of rice straw, the production of which was based on the Philippine farming practice. Rice straw is treated as a milled rice coproduct and assumes an environmental burden which is allocated by mass. The results of an impact assessment for climate change was used directly in a system dynamic model to plot the accumulated greenhouse gas emissions from the system and compare with various cases in order to perform sensitivity analyses. At a productivity of 334 kWh/t, the global warming potential (GWP) of the system is equal to 0.642 kg CO2-eq/MJ, which is 27% lower than the GWP of rice straw on-site burning. Mitigating biogenic methane emissions from flooded rice fields could reduce the GWP of the system by 34%, while zero net carbon emissions can be achieved at 2.78 kg CO2/kg of milled rice carbon sequestration. Other sources of greenhouse gas (GHG) emissions are the use of fossil fuels and production of chemicals for agricultural use. The use of agricultural machinery and transport lorries has the highest impact on eutrophication potential and human toxicity, while the application of pesticides and fertilizers has the highest impact on ecotoxicity. The biomass energy ratio (BER) and net energy ratio (NER) of the system is 0.065 and 1.64, respectively. The BER and NER can be improved at a higher engine efficiency from 22% to 50%. The use of electricity produced by the G/ICE system to supply farm and plant operations could reduce the environmental impact and efficiency of the process.


Sign in / Sign up

Export Citation Format

Share Document