scholarly journals Long Short-Term Memory Algorithm for Rainfall Prediction Based on El-Nino and IOD Data

2021 ◽  
Vol 179 ◽  
pp. 829-837
Author(s):  
Dina Zatusiva Haq ◽  
Dian Candra Rini Novitasari ◽  
Abdulloh Hamid ◽  
Nurissaidah Ulinnuha ◽  
Arnita ◽  
...  
2021 ◽  
pp. 87
Author(s):  
Renaldy Fredyan ◽  
Andang Kurniawan ◽  
Agus Naba ◽  
Abdurrouf Abdurrouf

Isu yang sedang hangat diperbincangkan terkait iklim yang berefek besar pada makhluk hidup di muka bumi yaitu perubahan iklim. Berbagai upaya prediksi untuk meramalkan masa depan iklim bumi terhadap keberlangsungan hidup manusia. NOAA sebagai salah satu lembaga yang mempelajari ilmu klimatologi secara mendalam menerbitkan jurnal tentang metode pendekatan yang menghasilkan Data CHIRTSmax. Data tersebut terdiri dari data spasial dan temporal dengan rentang waktu 1983 hingga 2016. Data CHIRTSmax tersebut akan menjadi dasar untuk memprediksi model iklim di masa mendatang. Berbagai model prediksi berkembang secara pesat untuk mengalkulasi prediktabilitas secara tepat dan akurat. Model yang digunakan yaitu Average dimana data di rata-rata berbasis simulasi untuk merepresentasikan pola bulanan matahari. Kemudian dilakukan model Linier Regression dan pemodelan Long Short-Term Memory dimana model dibuat 3 variasi yaitu Conv 2 Dimensi LSTM, Conv 1 Dimensi LSTM, dan Flatten LSTM. Tujuan dilakukan metode tersebut adalah untuk melakukan perbaikan prediksi pada tiap metode sebelumnya. Hasil yang di dapat menunjukkan terjadi perbaikan dan model yang paling cocok dalam kasus ini adalah Flatten LSTM. Selain itu pada analisis error diketahui bahwa pada daerah pesisir memiliki prediktabilitas yang rendah. Pengaruh prediktabilitas secara signifikan disebabkan oleh El Nino, oleh sebab itu saat terjadi El Nino perlu ditingkatkan kewaspadaan.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 668 ◽  
Author(s):  
S. Poornima ◽  
M. Pushpalatha

Prediction of rainfall is one of the major concerns in the domain of meteorology. Several techniques have been formerly proposed to predict rainfall based on statistical analysis, machine learning and deep learning techniques. Prediction of time series data in meteorology can assist in decision-making processes carried out by organizations responsible for the prevention of disasters. This paper presents Intensified Long Short-Term Memory (Intensified LSTM) based Recurrent Neural Network (RNN) to predict rainfall. The neural network is trained and tested using a standard dataset of rainfall. The trained network will produce predicted attribute of rainfall. The parameters considered for the evaluation of the performance and the efficiency of the proposed rainfall prediction model are Root Mean Square Error (RMSE), accuracy, number of epochs, loss, and learning rate of the network. The results obtained are compared with Holt–Winters, Extreme Learning Machine (ELM), Autoregressive Integrated Moving Average (ARIMA), Recurrent Neural Network and Long Short-Term Memory models in order to exemplify the improvement in the ability to predict rainfall.


2020 ◽  
Vol 12 (19) ◽  
pp. 3174
Author(s):  
Manoj Chhetri ◽  
Sudhanshu Kumar ◽  
Partha Pratim Roy ◽  
Byung-Gyu Kim

Rainfall prediction is an important task due to the dependence of many people on it, especially in the agriculture sector. Prediction is difficult and even more complex due to the dynamic nature of rainfalls. In this study, we carry out monthly rainfall prediction over Simtokha a region in the capital of Bhutan, Thimphu. The rainfall data were obtained from the National Center of Hydrology and Meteorology Department (NCHM) of Bhutan. We study the predictive capability with Linear Regression, Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and Bidirectional Long Short Term Memory (BLSTM) based on the parameters recorded by the automatic weather station in the region. Furthermore, this paper proposes a BLSTM-GRU based model which outperforms the existing machine and deep learning models. From the six different existing models under study, LSTM recorded the best Mean Square Error (MSE) score of 0.0128. The proposed BLSTM-GRU model outperformed LSTM by 41.1% with a MSE score of 0.0075. Experimental results are encouraging and suggest that the proposed model can achieve lower MSE in rainfall prediction systems.


2020 ◽  
Author(s):  
Abdolreza Nazemi ◽  
Johannes Jakubik ◽  
Andreas Geyer-Schulz ◽  
Frank J. Fabozzi

Sign in / Sign up

Export Citation Format

Share Document