scholarly journals Influence of fatigue damage on the mechanical behaviour of 2024-T3 aluminum alloy

2011 ◽  
Vol 10 ◽  
pp. 798-806 ◽  
Author(s):  
A. May ◽  
M.A. Belouchrani ◽  
A. Manaa ◽  
Y. Bouteghrine
Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2243 ◽  
Author(s):  
Haipeng Song ◽  
Changchun Liu ◽  
Hao Zhang ◽  
Sean Leen

This paper investigates the fatigue damage and cracking behavior of aluminum alloy 2024-T4 with different levels of prior corrosion. Damage evolution, crack initiation and propagation were experimentally analyzed by digital image correlation, scanning electron microscopy and damage curves. Prior corrosion is shown to cause accelerated damage accumulation, inducing premature fatigue crack initiation, and affecting crack nucleation location, crack orientation and fracture path. For the pre-corrosion condition, although multiple cracks were observed, only one corrosion-initiated primary crack dominates the failure process, in contrast to the plain fatigue cases, where multiple cracks propagated simultaneously leading to final coalescence and fracture. Based on the experimental observations, a mixed-mode fracture model is proposed and shown to successfully predict fatigue crack growth and failure from the single dominant localized corrosion region.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Kuanyu Chen ◽  
Guangwu Yang ◽  
Jianjun Zhang ◽  
Shoune Xiao ◽  
Yang Xu

In this study, a non-Gaussian excitation acceleration method is proposed, using aluminum alloy notched specimens as a research object and measured acceleration signal of a certain airborne bracket, during aircraft flight as input excitations, based on the fatigue damage spectrum (FDS) theory. The kurtosis and skewness of the input signal are calculated and the non-Gaussian characteristics and amplitude distribution are evaluated. Five task segments obey a non-Gaussian distribution, while one task segment obeys a Gaussian distribution. The fatigue damage spectrum calculation method of non-Gaussian excitation is derived. The appropriate FDS calculation method is selected for each task segment and the acceleration parameters are set to construct the acceleration power spectral density, which is equivalent to the pseudo-acceleration damage. A finite-element model is established, the notch stress concentration factor of the specimen is calculated, the large mass point method is used to simulate the shaking table excitation, and a random vibration analysis is carried out to calculate the accelerated fatigue life. The simulation results show that the relative error between the original cumulative damage and test original fatigue life is 15.7%. The shaking table test results show that the relative error of fatigue life before and after acceleration is less than 16.95%, and the relative error of test and simulation is 24.27%. The failure time of the specimen is accelerated from approximately 12 h to 1 h, the acceleration ratio reaches 12, and the average acceleration ideal factor is 1.125, which verifies the effectiveness of the acceleration method. It provides a reference for the compilation of the load spectrum and vibration endurance acceleration test of other airborne aircraft equipment.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Sha Xu ◽  
Hao Chen ◽  
Yali Yang ◽  
Kun Gao

Abstract Three-dimensional (3D) reconstruction and finite element method are combined to study the damage behavior of aluminum alloy resistance spot-welded joints. Fatigue damage of spot-welded joints under different cyclic loading stages was obtained by X-ray microcomputed tomography (X-ray micro CT). Then, avizo software was used to reconstruct the scanned data of joints with different damage degrees, and the distribution and variation of defects in the joints are obtained. On this basis, 3D finite element damage models were established. Finite element calculations were carried out to analyze the fatigue damage of spot-welded joints by adopting the effective elastic modulus as the damage parameter. The results show that the effective elastic modulus is consistent with the experimental results. The method of combining 3D reconstruction with the finite element method can be used to evaluate the internal damage of spot-welded joints and provide theoretical basis for the prediction of fatigue life.


2011 ◽  
Vol 328-330 ◽  
pp. 1440-1444
Author(s):  
Hua Zou ◽  
Qiang Li ◽  
Shou Guang Sun

Cumulative fatigue damage is an important consideration in determining the fatigue life of structures. A cumulative linear damage rule cannot provide a reasonable explanation for cumulative fatigue damage, but a damage curve method based on nonlinear cumulative fatigue damage model can give a reasonable explanation. In this paper, a specific mathematical model is put forward, which is based on the damage curve method. In the model, miner formula is modified properly and an exponent formula is give out to fit the damage accumulate. According to a two-step fatigue test of aluminum–alloy welded joint, the comparison between the calculated results and the testing results is less than 5%. It shows that the model is reasonable and accuracy.


Sign in / Sign up

Export Citation Format

Share Document