scholarly journals Evaluation of Effective Thermal Conductivity of Multiwalled Carbon Nanotube Reinforced Polymer Composites Using Finite Element Method and Continuum Model

2014 ◽  
Vol 90 ◽  
pp. 129-135 ◽  
Author(s):  
Sharif Ahmed ◽  
A.K.M. Masud
Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 398 ◽  
Author(s):  
Yongcun Zhou ◽  
Xiao Zhuang ◽  
Feixiang Wu ◽  
Feng Liu

Polymer composites with high thermal conductivity have a great potential for applications in modern electronics due to their low cost, easy process, and stable physical and chemical properties. Nevertheless, most polymer composites commonly possess unsatisfactory thermal conductivity, primarily because of the high interfacial thermal resistance between inorganic fillers. Herein, we developed a novel method through silver functionalized graphene nanosheets (GNS) and multiwalled carbon nanotube (MWCNT) composites with excellent thermal properties to meet the requirements of thermal management. The effects of composites on interfacial structure and properties of the composites were identified, and the microstructures and properties of the composites were studied as a function of the volume fraction of fillers. An ultrahigh thermal conductivity of 12.3 W/mK for polymer matrix composites was obtained, which is an approximate enhancement of 69.1 times compared to the polyvinyl alcohol (PVA) matrix. Moreover, these composites showed more competitive thermal conductivities compared to untreated fillers/PVA composites applied to the desktop central processing unit, making these composites a high-performance alternative to be used for thermal management.


Author(s):  
Yongcun Zhou ◽  
Xiao Zhuang ◽  
Feixiang Wu ◽  
Feng Liu

Polymer composites with high thermal conductivity have a great potential for applications in modern electronics due to their low cost, easy process, and stable physical and chemical properties. Nevertheless, most polymer composites commonly possess unsatisfactory thermal conductivity, primarily because of the high interfacial thermal resistance between inorganic fillers. Herein, we developed a novel method through silver functionalized graphene nanosheets (GNS) and multiwalled carbon nanotube (MWCNT) composites with excellent thermal properties to meet the requirements of thermal management. The effects of composites on interfacial structure and properties of the composites were identified, and the microstructures and properties of the composites were studied as a function of the volume fraction of fillers. An ultrahigh thermal conductivity of 12.3 W/mK for polymer matrix composites was obtained, which is an approximate enhancement of 69.1 times compared to the polyvinyl alcohol (PVA) matrix. Moreover, these composites showed more competitive thermal conductivities compared to untreated fillers/PVA composites applied to the desktop central processing unit, making these composites a high-performance alternative to be used for thermal management.


2017 ◽  
Vol 17 (8) ◽  
pp. 5445-5452 ◽  
Author(s):  
Krisztian Nemeth ◽  
Levente Kovacs ◽  
Balazs Reti ◽  
Karoly Belina ◽  
Klara Hernadi

2009 ◽  
Vol 58 (7) ◽  
pp. 4536
Author(s):  
Wang Jian-Li ◽  
Xiong Guo-Ping ◽  
Gu Ming ◽  
Zhang Xing ◽  
Liang Ji

Author(s):  
S. Xu ◽  
O. Rezvanian ◽  
M. A. Zikry

A new finite element (FE) modeling method has been developed to investigate how the electrical-mechanical-thermal behavior of carbon nanotube (CNT)–reinforced polymer composites is affected by electron tunneling distances, volume fraction, and physically realistic tube aspect ratios. A representative CNT polymer composite conductive path was chosen from a percolation analysis to establish the three-dimensional (3D) computational finite-element (FE) approach. A specialized Maxwell FE formulation with a Fermi-based tunneling resistance was then used to obtain current density evolution for different CNT/polymer dispersions and tunneling distances. Analyses based on thermoelectrical and electrothermomechanical FE approaches were used to understand how CNT-epoxy composites behave under electrothermomechanical loading conditions.


2013 ◽  
Vol 24 (12) ◽  
pp. 125203 ◽  
Author(s):  
Messai A Mamo ◽  
Alan O Sustaita ◽  
Zikhona N Tetana ◽  
Neil J Coville ◽  
Ivo A Hümmelgen

Sign in / Sign up

Export Citation Format

Share Document