scholarly journals Dynamics of Multi-body Mechanical Systems with Unilateral Constraints and Impacts

2014 ◽  
Vol 91 ◽  
pp. 112-117 ◽  
Author(s):  
Artur Zbiciak ◽  
Zofia Kozyra
Author(s):  
Henry T. Wu ◽  
Neel K. Mani

Abstract Vibration normal modes and static correction modes have been previously used to model flexible bodies for dynamic analysis of mechanical systems. The efficiency and accuracy of using these modes to model a system depends on both the flexibility of each body and the applied loads. This paper develops a generalized method for the generation of a set of Ritz vectors to model flexible bodies for dynamic analysis of multi-body mechanical systems. The Ritz vectors are generated using the distribution of dynamic loading on a flexible body. Therefore they form the most efficient vector basis for the spatial distribution of the loadings. The Ritz vectors can be re-generated when the system undergoes significant changes of its configuration and the regeneration procedure is inexpensive. The combinations of vibration normal modes and the proposed Ritz vectors thus form more efficient and accurate vector bases for the modeling of flexible bodies for dynamic analysis.


Author(s):  
Firdaus E Udwadia ◽  
Phailaung Phohomsiri

This paper gives the general constrained Poincaré equations of motion for mechanical systems subjected to holonomic and/or nonholonomic constraints that may or may not satisfy d'Alembert's principle at each instant of time. It also extends Gauss's principle of least constraint to include quasi-accelerations when the constraints are ideal, thereby expanding the compass of this principle considerably. The new equations provide deeper insights into the dynamics of multi-body systems and point to new ways for controlling them.


1991 ◽  
Vol 113 (2) ◽  
pp. 158-166 ◽  
Author(s):  
Dae-Sung Bae ◽  
Ruoh-Shih Hwang ◽  
Edward J. Haug

A new recursive algorithm for real-time dynamic simulation of mechanical systems with closed kinematic loops is presented. State vector kinematic relations that represent translational and rotational motion are defined to simplify the formulation and to relieve computational burden. Recursive equations of motion are first derived for a single loop multi-body system. Faster than real-time performance is demonstrated for a closed loop manipulator, using an Alliant FX/8 multiprocessor. The algorithm is extended to multi-loop, multi-body systems for parallel processing real-time simulation in companion papers [1, 2] where performance of the algorithm on a shared memory multi-processor is compared with that achieved with other dynamic simulation algorithms.


Sign in / Sign up

Export Citation Format

Share Document