scholarly journals Evolutionary Multi-objective Optimization in Building Retrofit Planning Problem

2016 ◽  
Vol 145 ◽  
pp. 565-570 ◽  
Author(s):  
Hyojoo Son ◽  
Changwan Kim
2021 ◽  
Vol 27 (1) ◽  
pp. 45-59
Author(s):  
Hong Zhang ◽  
Lu Yu

Delivery of the prefabricated components may be disrupted by low productivity and various of traffic restrictions, thus delaying the prefabricated construction project. However, planning of the prefabricated component supply chain (PCSC) under disruptions has seldom been studied. This paper studies the construction schedule-dependent resilience for the PCSC plan by considering transportation costs and proposes a multi-objective optimization model. First, the PCSC planning problem regarding schedule-dependent resilience and resultant transportation cost is analyzed. Second, a quantification scheme of the schedule-dependent resilience of the PCSC plan is proposed. Third, formulation of the resilience-cost tradeoff optimization model for the PCSC planning is developed. Fourth, the multi-objective particle swarm optimization (MOPSO)-based method for solving the resilience-cost tradeoff model is presented. Finally, a case study is presented to demonstrate and justify the developed method. This study contributes to the knowledge and methodologies for PCSC management by addressing resilience at the planning stage.


2021 ◽  
Vol 8 (4) ◽  
pp. 616-626
Author(s):  
S. Ait Lhadj Lamin ◽  
◽  
A. Raghib ◽  
B. Abou El Majd ◽  
◽  
...  

Radio-frequency identification (RFID) is a new technology used for identifying and tracking objects or people by radio-frequency waves to facilitate automated traceability and data collection. The RFID system consists of an electronic tag attached to an object, readers, and a middleware. In the latest real applications based on the RFID technology, the deployment of readers has become a central issue for RFID network planning by means of optimizing several objectives such as the coverage of tags, the number of readers, and the readers/tags interferences. In practice, the system is affected by uncertainty and uncontrollable environmental parameters. Therefore, the optimal solutions to the RFID network planning problem can be significantly reduced with uncontrollable variations in some parameters, such as the reader's transmitted power. In this work, we propose a robust multi-objective optimization approach to solve the deployment of RFID readers. In this way, we achieve robust optimal solutions that are insensitive to uncertainties in the optimization parameters.


2012 ◽  
Vol 56 ◽  
pp. 370-378 ◽  
Author(s):  
Ehsan Asadi ◽  
Manuel Gameiro da Silva ◽  
Carlos Henggeler Antunes ◽  
Luís Dias

2012 ◽  
Vol 44 ◽  
pp. 81-87 ◽  
Author(s):  
Ehsan Asadi ◽  
Manuel Gameiro da Silva ◽  
Carlos Henggeler Antunes ◽  
Luís Dias

2021 ◽  
Vol 9 (10) ◽  
pp. 1126
Author(s):  
Meiyi Wu ◽  
Anmin Zhang ◽  
Miao Gao ◽  
Jiali Zhang

Ship motion planning constitutes the most critical part in the autonomous navigation systems of marine autonomous surface ships (MASS). Weather and ocean conditions can significantly affect their navigation, but there are relatively few studies on the influence of wind and current on motion planning. This study investigates the motion planning problem for USV, wherein the goal is to obtain an optimal path under the interference of the navigation environment (wind and current), and control the USV in order to avoid obstacles and arrive at its destination without collision. In this process, the influences of search efficiency, navigation safety and energy consumption on motion planning are taken into consideration. Firstly, the navigation environment is constructed by integrating information, including the electronic navigational chart, wind and current field. Based on the environmental interference factors, the three-degree-of-freedom kinematic model of USVs is created, and the multi-objective optimization and complex constraints are reasonably expressed to establish the corresponding optimization model. A multi-objective optimization algorithm based on HA* is proposed after considering the constraints of motion and dynamic and optimization objectives. Simulation verifies the effectiveness of the algorithm, where an efficient, safe and economical path is obtained and is more in line with the needs of practical application.


2012 ◽  
Vol 10 (4) ◽  
Author(s):  
Emily Curtis ◽  
Robert Willis

A multi-objective linked simulation and optimization (LSO) model for a three dimensional saltwater intrusion problem has been developed. The LSO employs HST3D and Box’s algorithm. The weighting method of multi-objective optimization solves the multi-objective planning problem. The model is capable of determining the optimal pumping rates that minimize the saline concentration at the well sites, as well as, the cost associated with pumping, while satisfying an exogenous water demand. The model is valid for a wide range of applications as explicitly defined by the simulation model. The application of the model was limited to a modified version of Henry’s saltwater intrusion problem. Henry’s problem was modified to include a third spatial dimension and well sites. The multi-objective optimization yielded explicit tradeoff information between the two objectives.


Sign in / Sign up

Export Citation Format

Share Document