scholarly journals A Compact CMOS Compatible micro-Pirani Vacuum Sensor with Wide Operating Range and Low Power Consumption

2016 ◽  
Vol 168 ◽  
pp. 766-769 ◽  
Author(s):  
Massimo Piotto ◽  
Simone Del Cesta ◽  
Paolo Bruschi
Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 188 ◽  
Author(s):  
Debo Wei ◽  
Jianyu Fu ◽  
Ruiwen Liu ◽  
Ying Hou ◽  
Chao Liu ◽  
...  

Micro-Pirani vacuum sensors usually operate at hundreds of microwatts, which limits their application in battery-powered sensor systems. This paper reports a diode-based, low power consumption micro-Pirani vacuum sensor that has high sensitivity. Optimizations to the micro-Pirani vacuum sensor were made regarding two aspects. On the one hand, a greater temperature coefficient was obtained without increasing power consumption by taking advantage of series diodes; on the other hand, the sensor structure and geometries were redesigned to enlarge temperature variation. After that, the sensor was fabricated and tested. Test results indicated that the dynamic vacuum pressure range of the sensor was from 10−1 to 104 Pa when the forward bias current was as low as 10 μA with a power consumption of 50 μW. Average sensitivity was up to 90 μV/Pa and the sensitivity of unit power consumption increased to 1.8 V/W/Pa. In addition, the sensor could also work at a greater forward bias current for better sensor performance.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Nano Letters ◽  
2013 ◽  
Vol 13 (4) ◽  
pp. 1451-1456 ◽  
Author(s):  
T. Barois ◽  
A. Ayari ◽  
P. Vincent ◽  
S. Perisanu ◽  
P. Poncharal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document