scholarly journals Influence of capacitive no-load current component in large power transformers

2017 ◽  
Vol 202 ◽  
pp. 176-182
Author(s):  
Goran Rovišan ◽  
Goran Plišić ◽  
Franjo Kelemen
2020 ◽  
Vol 64 (1-4) ◽  
pp. 289-298
Author(s):  
Li Li ◽  
Dianhai Zhang ◽  
Zhi Wang ◽  
Yanli Zhang ◽  
Xiaopeng Fan ◽  
...  

The vibration and noise are serious problems for large oil-immersed power transformers, which directly affect the performance and stability of transformers. The no-load current, as the excitation source, is very important for accurate calculation of vibration and noise. This paper provides a novel approach based on the new field-circuit coupling model to calculate no-load current of large power transformers. For one 110 kV large oil-immersed power transformer, the multi-physics coupling problem including magnetic field, structural force field and acoustic field under alternating magnetic field is analyzed. Following the multi-physics coupling calculation, distributions of vibration and noise are obtained. To validate feasibility and applicability of the proposed method, the actual vibration and noise of transformer are measured experimentally. Finally, the simulation results are compared with experimental ones, which show better goodness of fit.


2020 ◽  
Vol 67 (1) ◽  
pp. 42-47
Author(s):  
Anatoliy I. Sopov ◽  
Aleksandr V. Vinogradov

In power transformers, energy losses in the form of heat are about 2 percent of their rated power, and in transformers of large power centers reach hundreds of kilowatts. Heat is dissipated into the environment and heats the street air. Therefore, there is a need to consume this thermal energy as a source of heat supply to nearby facilities. (Research purpose) To develop methods and means of using excess heat of power transformers with improvement of their cooling system design. (Materials and methods) The authors applied following methods: analysis, synthesis, comparison, monographic, mathematical and others. They analyzed various methods for consuming excess heat from power transformers. They identified suitable heat supply sources among power transformers and potential heat consumers. The authors studied the reasons for the formation of excess heat in power transformers and found ways to conserve this heat to increase the efficiency of its selection. (Results and discussion) The authors developed an improved power transformer cooling system design to combine the functions of voltage transformation and electric heating. They conducted experiments to verify the effectiveness of decisions made. A feasibility study was carried out on the implementation of the developed system using the example of the TMG-1000/10/0.4 power transformer. (Conclusions) The authors got a new way to use the excess heat of power transformers to heat the AIC facilities. It was determined that the improved design of the power transformer and its cooling system using the developed solutions made it possible to maximize the amount of heat taken off without quality loss of voltage transformation.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4016
Author(s):  
Krzysztof Walczak ◽  
Jaroslaw Gielniak

HV bushings are an important part of the equipment of large power transformers, responsible for their many serious (including catastrophic) failures. Their proper exploitation needs to apply correct and reliable diagnostics, e.g., the use of dielectric response methods, that take into account their specific construction and working conditions. In this article, based on laboratory tests carried out on a real bushing, it has been shown that the significant temperature distribution within its core significantly affects the shape of the dielectric response of its insulation; therefore, the approach to its modeling should be changed. Hence, a new method for interpreting the results, using the so-called the 2XY model, is proposed. Subsequently, based on the measurements made on the insulators in operation, a new modeling method was verified. In conclusion, it can be stated that the 2XY model significantly improves the reliability of the dielectric response analysis, which should be confirmed in the future by tests on withdrawn and revised insulators.


1982 ◽  
Vol PAS-101 (11) ◽  
pp. 4272-4280 ◽  
Author(s):  
M. Yasuda ◽  
K. Goto ◽  
H. Okubo ◽  
T. Ishii ◽  
E. Mori ◽  
...  

Author(s):  
Tamás Orosz ◽  
David Pánek ◽  
Pavel Karban

Since large power transformers are custom-made, and their design process is a labor-intensive task, their design process is split into different parts. In tendering, the price calculation is based on the preliminary design of the transformer. Due to the complexity of this task, it belongs to the most general branch of discrete, non-linear mathematical optimization problems. Most of the published algorithms are using a copper filling factor based winding model to calculate the main dimensions of the transformer during this first, preliminary design step. Therefore, these cost optimization methods are not considering the detailed winding layout and the conductor dimensions. However, the knowledge of the exact conductor dimensions is essential to calculate the thermal behaviour of the windings and make a more accurate stray loss calculation. The paper presents a novel, evolutionary algorithm-based transformer optimization method which can determine the optimal conductor shape for the windings during this examined preliminary design stage. The accuracy of the presented FEM method was tested on an existing transformer design. Then the results of the proposed optimization method have been compared with a validated transformer design optimization algorithm.


Sign in / Sign up

Export Citation Format

Share Document