scholarly journals Effects of temperature, forming speed and stress relaxation on springback in warm forming of high strength steel sheet

2017 ◽  
Vol 207 ◽  
pp. 2394-2398 ◽  
Author(s):  
Naoko Saito ◽  
Mitsugi Fukahori ◽  
Daisuke Hisano ◽  
Hiroshi Hamasaki ◽  
Fusahito Yoshida
2016 ◽  
Vol 725 ◽  
pp. 671-676 ◽  
Author(s):  
Naoko Saito ◽  
Mitsugi Fukahori ◽  
Daisuke Hisano ◽  
Hiroshi Hamasaki ◽  
Fusahito Yoshida

Springback of a high strength steel (HSS) sheet of 980 MPa grade was investigated at elevated temperatures ranging from room temperature to 973 K. From U-and V-bending experiments it was found that springback was decreased with increasing temperature at temperatures of above 573 K. Furthermore, springback was decreased with punch-holding time because of stress relaxation. In this work, the stress relaxation behavior of the steel was experimentally measured. By using an elasto-vicoplasticity model, the stress relaxation was described, and its effect on the springback of sheet metals in warm forming was discussed theoretically.


2011 ◽  
Vol 410 ◽  
pp. 232-235 ◽  
Author(s):  
Sansot Panich ◽  
Vitoon Uthaisangsuk ◽  
Surasak Suranuntchai ◽  
Suwat Jirathearanat

Anisotropic plastic behavior of advanced high strength steel sheet of grade TRIP780 (Transformation Induced Plasticity) was investigated using three different yield functions, namely, the von Mises’s isotropic, Hill’s anisotropic (Hill’48), and Barlat’s anisotropic (Yld2000-2d) criterion. Uniaxial tensile and balanced biaxial test were conducted for the examined steel in order to characterize flow behavior and plastic anisotropy for different stress states. Especially, disk compression test was performed for obtaining balanced r-value. All these data were used to determine the anisotropic coefficients. As a result, yield stresses and r-values for different directions were calculated according to these yield criteria. The results were compared with experimental data. To verify the modelling accuracy, tensile tests of various notched samples were carried out and stress-strain distributions in the critical area were characterized. By this manner, the effect of stress triaxiality due to different notched shapes on the strain localization calculated by the investigated yield criteria could be studied.


Author(s):  
Mei Zhang ◽  
Shaoli Fang ◽  
Anvar A. Zakhidov ◽  
Sergey B. Lee ◽  
Ali E. Aliev ◽  
...  

We demonstrate carbon nanotube assembly by cooperatively rotating carbon nanotubes in vertically-oriented nanotube arrays (forests) and make 5-centimeter-wide, meter-long transparent sheets. These self-supporting nanotube sheets are initially formed as a highly anisotropic electronically conducting aerogel that can be densified into strong sheets that are as thin as 50 nanometers. The measured gravimetric strength of orthogonally oriented sheet arrays exceeds that of high strength steel sheet.


Sign in / Sign up

Export Citation Format

Share Document