scholarly journals A Two-level Energy Storage System for Wind Energy Systems

2012 ◽  
Vol 12 ◽  
pp. 130-136 ◽  
Author(s):  
Xi Xiao ◽  
Hu Yi ◽  
Qing Kang ◽  
Jinfeng Nie
Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4332
Author(s):  
Morteza Vahid-Ghavidel ◽  
Mohammad Sadegh Javadi ◽  
Matthew Gough ◽  
Sérgio F. Santos ◽  
Miadreza Shafie-khah ◽  
...  

A key challenge for future energy systems is how to minimize the effects of employing demand response (DR) programs on the consumer. There exists a diverse range of consumers with a variety of types of loads, such as must-run loads, and this can reduce the impact of consumer participation in DR programs. Multi-energy systems (MES) can solve this issue and have the capability to reduce any discomfort faced by all types of consumers who are willing to participate in the DRPs. In this paper, the most recent implementations of DR frameworks in the MESs are comprehensively reviewed. The DR modelling approach in such energy systems is investigated and the main contributions of each of these works are included. Notably, the amount of research in MES has rapidly increased in recent years. The majority of the reviewed works consider power, heat and gas systems within the MES. Over three-quarters of the papers investigated consider some form of energy storage system, which shows how important having efficient, cost-effective and reliable energy storage systems will be in the future. In addition, a vast majority of the works also considered some form of demand response programs in their model. This points to the need to make participating in the energy market easier for consumers, as well as the importance of good communication between generators, system operators, and consumers. Moreover, the emerging topics within the area of MES are investigated using a bibliometric analysis to provide insight to other researchers in this area.


2016 ◽  
Vol 8 (12) ◽  
pp. 1336
Author(s):  
Haixiang Zang ◽  
Mian Guo ◽  
Zeyu Qian ◽  
Zhinong Wei ◽  
Guoqiang Sun

Author(s):  
A. Lavanya ◽  
K. Vijaya Kumar ◽  
J. Divya Navamani

Dual input dc-dc converters have two input voltage sources  or one input source and an energy storage system like ultra capacitor, PV, battery, super capacitors and a single output load. In order to process the power in hybrid energy systems using reduced part count, researchers have proposed several multi-input dc-dc power converter topologies to transfer power from different input voltage sources to the output. This paper compares non-isolated dual-input converter topologies topologically ,based on the components count, various fields of application and  different modes of operation for hybrid systems mainly used in electric vehicles  and renewable energy systems composed of energy storage systems (ESSs) with different voltage-current characteristics. Dual input dc-dc converter topologies considered in this paper are investigated using MATLAB and PSIM software and output voltage and inductor current waveforms are shown.


Sign in / Sign up

Export Citation Format

Share Document