scholarly journals Damage detection of surface cracks in metallic parts by pulsed Eddy-Current probe

2018 ◽  
Vol 22 ◽  
pp. 209-214 ◽  
Author(s):  
Abdeslam Aoukili ◽  
Abdellatif Khamlichi
Author(s):  
Faris Nafiah ◽  
Ali Sophian ◽  
Md Raisuddin Khan ◽  
Ilham Mukriz Zainal Abidin

<p><span style="font-family: Arial; font-size: small;">Thanks to its wide bandwidth, pulsed eddy current (PEC) has attracted researchers of various backgrounds in the attempt to exploit its benefits in Non-destructive Testing (NDT). The ability of modelling PEC problems would be a precious tool in this attempt as it would help improve the understanding of the interaction between the transient magnetic field and the specimen, among others. In this work, a Finite Element Modelling (FEM) has been developed and experimental test data have been gathered for its validation. The investigated cases were simulated surface cracks of different sizes and angles. The study involved looking at time-domain PEC signals at different spatial distances from the cracks’ faces, which would particularly be useful for modelling scanning PEC probes. The obtained results show a good agreement between the FEM and experiment, demonstrating that the modelling technique can be used with confidence for solving similar problems.</span></p>


2020 ◽  
Vol 64 (1-4) ◽  
pp. 19-29
Author(s):  
Shuting Ren ◽  
Yong Li ◽  
Bei Yan ◽  
Jinhua Hu ◽  
Ilham Mukriz Zainal Abidin ◽  
...  

Structures of nonmagnetic materials are broadly used in engineering fields such as aerospace, energy, etc. Due to corrosive and hostile environments, they are vulnerable to the Subsurface Pitting Corrosion (SPC) leading to structural failure. Therefore, it is imperative to conduct periodical inspection and comprehensive evaluation of SPC using reliable nondestructive evaluation techniques. Extended from the conventional Pulsed eddy current method (PEC), Gradient-field Pulsed Eddy Current technique (GPEC) has been proposed and found to be advantageous over PEC in terms of enhanced inspection sensitivity and accuracy in evaluation and imaging of subsurface defects in nonmagnetic conductors. In this paper two GPEC probes for uniform field excitation are intensively analyzed and compared. Their capabilities in SPC evaluation and imaging are explored through simulations and experiments. The optimal position for deployment of the magnetic field sensor is determined by scrutinizing the field uniformity and inspection sensitivity to SPC based on finite element simulations. After the optimal probe structure is chosen, quantitative evaluation and imaging of SPC are investigated. Signal/image processing algorithms for SPC evaluation are proposed. Through simulations and experiments, it has been found that the T-shaped probe together with the proposed processing algorithms is advantageous and preferable for profile recognition and depth evaluation of SPC.


2013 ◽  
Vol 33 (3) ◽  
pp. 866-870
Author(s):  
Xuanbing QIU ◽  
Jilin WEI ◽  
Xiaochao CUI ◽  
Chunhua XIA

Sign in / Sign up

Export Citation Format

Share Document