scholarly journals HydraX, a 3D printed robotic arm for Hybrid Manufacturing. Part I: Custom Design, Manufacturing and Assembly

2020 ◽  
Vol 51 ◽  
pp. 103-108
Author(s):  
Agathoklis A. Krimpenis ◽  
Vasileios Papapaschos ◽  
Evgenios Bontarenko
2020 ◽  
Vol 51 ◽  
pp. 109-115
Author(s):  
Vasileios Papapaschos ◽  
Evgenios Bontarenko ◽  
Agathoklis A. Krimpenis

2021 ◽  
Vol 11 (4) ◽  
pp. 70-79
Author(s):  
Dino Dominic Forte Ligutan ◽  
Argel Alejandro Bandala ◽  
Jason Limon Española ◽  
Richard Josiah Calayag Tan Ai ◽  
Ryan Rhay Ponce Vicerra ◽  
...  

The development of a novel 3D-printed three-claw robotic gripper shall be described in this paper with the goal of incorporating various design considerations. Such considerations include the grip reliability and stability, grip force maximization, wide object grasping capability. Modularization of its components is another consideration that allows its parts to be easily machined and reusable. The design was realized by 3D printing using a combination of tough polylactic acid (PLA) material and thermoplastic polyurethane (TPU) material. In practice, additional tolerances were also considered for 3D printing of materials to compensate for possible expansion or shrinkage of the materials used to achieve the required functionality. The aim of the study is to explore the design and eventually deploy the three-claw robotic gripper to an actual robotic arm once its metal work fabrication is finished.


2020 ◽  
Vol 18 (05) ◽  
pp. 907-913
Author(s):  
J. Costa ◽  
T. Machado ◽  
M. Carneiro
Keyword(s):  

2017 ◽  
Vol 2 (2) ◽  
pp. 98 ◽  
Author(s):  
Guruprasad Kuppu Rao ◽  
Tanmay Shah ◽  
Vijay Dayanand Shetty ◽  
B. Ravi

<p>Management of bone and joint injuries is commonly done by immobilisation using plaster/fibreglass casts. This study describes design and fabrication of patient specific cast using 3D printing.  The 3D printed cast while being patient friendly is superior to earlier casts in healing efficacy and hence redefines the joint immobilisation practice. We present here a case of “walk on brace” design and fabrication using 3D printing. The custom design of ankle immobilisation cast was done for an 18-year-old boy having tibia bone fracture during gymnastic activity. The workflow comprises of anatomical data acquisition, CAD, 3D printing, post processing and clinical approval for use. Additional features such as straps, anti-slip inner surface and tread for floor grip were incorporated in the design. </p>


2020 ◽  
Vol 176 ◽  
pp. 3741-3750
Author(s):  
Rafał Siemasz ◽  
Krzysztof Tomczuk ◽  
Ziemowit Malecha

Author(s):  
Yu She ◽  
Zhaoyuan Gu ◽  
Siyang Song ◽  
Hai-Jun Su ◽  
Junmin Wang

Abstract In this paper, we present a continuously tunable stiffness arm for safe physical human-robot interactions. Compliant joints and compliant links are two typical solutions to address safety issues for physical human-robot interaction via introducing mechanical compliance to robotic systems. While extensive studies explore variable stiffness joints/actuators, variable stiffness links for safe physical human-robot interactions are much less studied. This paper details the design and modeling of a compliant robotic arm whose stiffness can be continuously tuned via cable-driven mechanisms actuated by a single servo motor. Specifically, a 3D printed compliant robotic arm is prototyped and tested by static experiments, and an analytical model of the variable stiffness arm is derived and validated by testing. The results show that the lateral stiffness of the robot arm can achieve a variety of 221.26% given a morphing angle of 90°. The study demonstrates that the compliant link design could be a promising approach to address safety concerns for safe physical human-robot interactions.


Author(s):  
He Shen ◽  
Salvador Rojas ◽  
Eduardo Molina ◽  
Francisco Moxo Galicia ◽  
Ni Li

A robotic arm is one of the most sophisticated components of a humanoid, due to its complexity in multi-degree-of-freedom actuation and sensing, size and weight constraints, and requirement for object manipulation. This paper talks about the design, development, and verification of a low-cost, light-weight robotic manipulator that can achieve anthropomorphic movements. The 5 degree-of-freedom robotic arm has a fully extended length of 31 – inches and weight of 7 - pounds. The joints of the arm were fabricated using mainly 3D printed parts using Polylactic Acid and Nylon and linked with carbon fiber tubing. The arm is actuated by 2 servo motors at the distal joint and 3 brushless DC motors at the proximal joints. All joints of the arm perform at zero backlash through harmonic gear boxes, which are also assembled mainly from 3D printed parts. The robotic arm has demonstrated a comparable performance to similar robotic arms on the market with significantly reduced cost.


2021 ◽  
pp. 1-15
Author(s):  
Yu She ◽  
Zhaoyuan Gu ◽  
Siyang Song ◽  
Hai-Jun Su ◽  
Junmin Wang

Abstract In this paper, we present a continuously tunable stiffness arm for safe physical human-robot interactions. Compliant joints and compliant links are two typical solutions to address safety issues for physical human-robot interactions via introducing mechanical compliance to robotic systems. While extensive studies explore variable stiffness joints/actuators, variable stiffness links for safe physical human-robot interactions are much less studied. This paper details the design and modeling of a compliant robotic arm whose stiffness can be continuously tuned via cable-driven mechanisms actuated by a single servo motor. Specifically, a 3D printed compliant robotic arm is prototyped and tested by static experiments, and an analytical model of the variable stiffness arm is derived and validated by testing. The results show that the lateral stiffness of the robot arm can achieve a variety of 221.26 % given a morphing angle of 90°. The variable stiffness arm design developed in this study could be a promising approach to address safety concerns for safe physical human-robot interactions.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Marcel Müller ◽  
Elmar Wings

Additive manufacturing is one of the key technologies of the 21st century. Additive manufacturing processes are often combined with subtractive manufacturing processes to create hybrid manufacturing because it is useful for manufacturing complex parts, for example, 3D printed sensor systems. Currently, several CNC machines are required for hybrid manufacturing: one machine is required for additive manufacturing and one is required for subtractive manufacturing. Disadvantages of conventional hybrid manufacturing methods are presented. Hybrid manufacturing with one CNC machine offers many advantages. It enables manufacturing of parts with higher accuracy, less production time, and lower costs. Using the example of fused layer modeling (FLM), we present a general approach for the integration of additive manufacturing processes into a numerical control for machine tools. The resulting CNC architecture is presented and its functionality is demonstrated. Its application is beyond the scope of this paper.


Sign in / Sign up

Export Citation Format

Share Document