scholarly journals Application of singular integral equation to crack moving near an inclusion in two-dimensional infinite plate

2018 ◽  
Vol 13 ◽  
pp. 131-136
Author(s):  
Masayuki Arai ◽  
Kazuki Yoshida
1976 ◽  
Vol 43 (4) ◽  
pp. 613-618 ◽  
Author(s):  
S. N. Prasad ◽  
P. K. Chiu

The present study investigates the two-dimensional stresses and displacements in a finite rectangle whose one set of parallel edges is given a relative tangential displacement by means of rigidly attached planes. The other set of parallel edges is free from tractions. The problem is formulated in terms of a singular integral equation of the first kind, which yields the correct singular behavior of stresses at the corners. The integral equation is solved numerically by employing Gauss-Jacobi quadrature in conjunction with certain collocation technique. Numerical results of quantities of practical interests are shown graphically and also compared with the classical bending analysis.


2018 ◽  
Vol 774 ◽  
pp. 113-118
Author(s):  
Masayuki Arai ◽  
Kazuki Yoshida

In this study, crack path simulation was conducted based on a singular integral equation formulated by a continuous distributed dislocation technique. The problem investigated in this study was to predict the propagation path of a crack moving in an infinite elastic plate with a circular hole, under uniform tensile loading. In order to perform this prediction, a probing method was developed to search for a crack moving direction where the mode II stress intensity factor would be almost zero, enabling the crack to automatically extend in that direction. Some cases for different locations of an initial straight crack were simulated using the program developed.


2006 ◽  
Vol 03 (02) ◽  
pp. 205-217 ◽  
Author(s):  
Y. Z. CHEN ◽  
X. Y. LIN

This paper provides, an elastic solution for multiple curved edge cracks emanating from the boundary of the half-plane. After placing the distributed dislocations at the prospective sites of cracks in an infinite plate, the principal part of the complex potentials is obtained. By using the concept of the modified complex potentials, the complementary part of the complex potentials can be derived. The whole complex potentials satisfy the traction free condition along the boundary of half-plane automatically. This is a particular advantage of the suggested method. This concept or method of the modified complex potentials is a counterpart of the Green's function method, which is universal in mathematical physics. The direct usage of this method cannot provide a solution in detail. Comparing with the line edge crack case, the following points are significant in the presented study. The relevant kernels in the integral equation are more complicated than in the line edge crack case and the relevant integrations in the problem should be completed on curves. This paper solves a rather complicated problem, the multiple curved edge crack problem, and gives the final solution. A singular integral equation is formulated with the dislocation distribution being unknown function and the traction being the right hand term. The singular integral equation is solved by using the curve length method in conjunction with the semiopening quadrature rule. Periodic curved edge crack problem is also addressed. Finally, several numerical examples are given to illustrate the efficiency of the method presented.


2014 ◽  
Vol 11 (05) ◽  
pp. 1350073 ◽  
Author(s):  
Y. Z. CHEN ◽  
Z. X. WANG

This paper studies T-stress problem for multiple cracks in an infinite plate with the remote loading. After some manipulations, the problem can be modeled by dislocation distributions along the crack faces. A singular integral equation is formulated for the problem, where the unknowns are the dislocation distribution along the crack faces. The SIFs (stress intensity factor) can be evaluated from the solution of singular integral equation. From a definition for T-stress in the crack back position method and the solution of the singular integral equation, the T-stresses at crack tips can be evaluated accordingly. An explicit formula for the T-stress is provided. Several numerical examples are provided. Accuracy of computation is examined by an example.


1978 ◽  
Vol 45 (4) ◽  
pp. 797-802 ◽  
Author(s):  
K. K. Lo

This paper presents a method for solving a class of two-dimensional elastic branched crack problems. In contrast to other approaches in the literature, the integral equation presented here enables different branched crack problems to be solved in a unified manner. Muskhelishvili’s potential formulation is used to derive, by means of a Green’s function technique, a singular integral equation in complex form. The problems of the asymmetrically, symmetrically, and doubly symmetrically branched cracks are considered. The ratio of the length of the branched crack to that of the main one may be varied arbitrarily and the limit in which this ratio goes to zero is obtained analytically. Stress-intensity factors at the branched crack tip are computed numerically and the results, where possible, are compared to those in the literature. Disagreements in the literature are discussed and clarified with the aid of the present results.


2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Yue Ting Zhou ◽  
Kang Yong Lee

The aim of the present paper is to investigate the two-dimensional moving contact behavior of piezomagnetic materials under the action of a sliding rigid punch. Introduction of the Galilean transformation makes the constitutive equations containing the inertial terms tractable. Eigenvalues analyses of the piezomagnetic governing equations are detailed, which are more complex than those of the commercially available piezoelectric materials. Four eigenvalue distribution cases occur in the practical computation. For each case, real fundamental solutions are derived. The original mixed boundary value problem with either a flat or a cylindrical punch foundation is reduced to a singular integral equation. Exact solution to the singular integral equation is obtained. Especially, explicit form of the stresses and magnetic inductions are given. Figures are plotted both to show the correctness of the derivation of the exact solution and to reveal the effects of various parameters on the stress and magnetic induction.


Sign in / Sign up

Export Citation Format

Share Document