scholarly journals Diffusion kurtosis imaging of white matter in bipolar disorder

Author(s):  
Vina M Goghari ◽  
Mavis Kusi ◽  
Mohammed K Shakeel ◽  
Clare Beasley ◽  
Szabolcs David ◽  
...  
2021 ◽  
Author(s):  
Vina M Goghari ◽  
Mavis Kusi ◽  
Mohammed K Shakeel ◽  
Clare Beasley ◽  
Szabolcs David ◽  
...  

AbstractObjectivesWhite matter pathology is thought to contribute to the pathogenesis of bipolar disorder (BD). However, most studies of white matter in BD have used the simple diffusion tensor imaging (DTI) model, which has several limitations. DTI studies have reported heterogenous results, leading to a lack of consensus about the extent and location of white matter alterations. Here, we applied two advanced diffusion magnetic resonance imaging (MRI) techniques to investigate white matter microstructure in BD.MethodsTwenty-five patients with BD and 24 controls comparable for age and sex were included in the study. Whole-brain voxel-based analysis (VBA) and a network-based connectivity approach using constrained spherical deconvolution (CSD)-tractography were used to assess group differences in diffusion kurtosis imaging (DKI) and DTI metrics.ResultsVBA showed lower mean kurtosis in the corona radiata and posterior association fibers in BD following threshold-free cluster enhancement. Regional differences in connectivity were indicated by lower mean kurtosis and kurtosis anisotropy in streamlines traversing the temporal and occipital lobes, and lower mean axial kurtosis in the right cerebellar, thalamo-subcortical pathways in BD. Significant differences were not seen in the DTI metrics following FDR- correction.ConclusionsDifferences between BD and controls were observed in DKI metrics in multiple brain regions, indicating altered connectivity across cortical, subcortical and cerebellar areas. DKI was more sensitive than DTI at detecting these differences, suggesting that DKI is useful for investigating white matter in BD.


2021 ◽  
Vol 29 ◽  
pp. 102555
Author(s):  
Sarah C. Hellewell ◽  
Thomas Welton ◽  
Kate Eisenhuth ◽  
Michel C. Tchan ◽  
Stuart M. Grieve

2021 ◽  
Vol 161 ◽  
pp. S638-S639
Author(s):  
C. Skinnerup Byskov ◽  
L. Haldbo-Classen ◽  
A. Harbøll ◽  
S. Nørhøj Jespersen ◽  
J. Folsted Kallehauge

2019 ◽  
Vol 41 (5) ◽  
pp. 1274-1285
Author(s):  
Thomas Welton ◽  
Ben E. Indja ◽  
Jerome J. Maller ◽  
Jonathon P. Fanning ◽  
Michael P. Vallely ◽  
...  

2021 ◽  
Author(s):  
Xin Zhao ◽  
Chunxiang Zhang ◽  
Bohao Zhang ◽  
Jiayue Yan ◽  
Kaiyu Wang ◽  
...  

Abstract Objective Preterm infants are at high risk of adverse neurodevelopmental outcome. Our aim is to explore the value of diffusion kurtosis imaging (DKI) in diagnosing brain developmental disorders in premature infants.Materials and Methods A total of 52 subjects were included in this study, including 26 premature infants as the preterm group, and 26 full-term infants as the control group. Routine magnetic resonance imaging and DKI examination were performed. Mean kurtosis (MK), radial kurtosis (RK), fractional anisotropy (FA), mean diffusivity (MD) values were measured in the brain regions including posterior limbs of the internal capsule (PLIC); anterior limb of internal capsule (ALIC); parietal white matter (PWM); frontal white matter (FWM); thalamus (TH); caudate nucleus (CN); genu of the corpus callosum (GCC). The X2, t test, Spearman’s correlation analysis and receiver operating characteristic curve (ROC)were used for data analyses.Results In the premature infant group, the MK and RK values of PLIA, ALIC, and PWM were lower than those in the control group (P<0.05). The FA values of PWM, FWM and TH were also lower than those of the control group (P<0.05). The AUCs of MK in PLIC and ALIC, MD in PWM, and FA in FWM were 0.813, 0.802, 0.842 and 0.867 (P<0.05). In thalamus and caudate nucleus, the correlations between MK, RK values and PMA were higher than those between FA, MD values and PMA.Conclusions DKI can be used as an effective tool in detecting brain developmental disorders in premature infants.


2021 ◽  
Author(s):  
Hiba Taha ◽  
Jordan A Chad ◽  
J. Jean Chen

Studies of healthy brain aging have reported diffusivity patterns associated with white matter degeneration using diffusion tensor imaging (DTI), which assumes that diffusion measured at the typical b-value (approximately 1000 s/mm2) is Gaussian. Diffusion kurtosis imaging (DKI) is an extension of DTI that measures non-Gaussian diffusion (kurtosis) to better capture microenvironmental changes by incorporating additional data at a higher b-value. In this study, using UK Biobank data (b values of 1000 and 2000 s/mm2), we investigate (1) the extent of novel information gained from adding diffusional kurtosis to diffusivity observations in aging, and (2) how conventional DTI metrics in aging compare with diffusivity metrics derived from DKI, which are corrected for kurtosis. We find a general pattern of lower kurtosis alongside higher diffusivity among older adults. We also find differences between diffusivity metrics derived from DTI and DKI, emphasizing the importance of accounting for non-Gaussian diffusion. This work highlights the utility of measuring diffusional kurtosis as a simple addition to conventional diffusion imaging of aging.


Sign in / Sign up

Export Citation Format

Share Document