Paleogeography of the last glacial maximum (LGM) in the north-western Alps area

2012 ◽  
Vol 279-280 ◽  
pp. 100
Author(s):  
Sylvain Coutterand
1996 ◽  
Vol 62 ◽  
pp. 1-17 ◽  
Author(s):  
Ruth Charles

This paper critically examines the known radiocarbon evidence for the human recolonisation of a part of north-western Europe, the north-western Ardennes. Two sites in this region, the Trou de Blaireaux at Vaucelles and the Grotte de Sy Verlaine, have been suggested as two of the earliest human occupation sites after the Last Glacial Maximum in northern Europe. The dating evidence from these two sites, alongside other late Magdalenian sites in the immediate area, is reviewed and found to be highly problematic. More recent radiocarbon work using AMS is described and the results discussed. On this basis it is suggested that there is no direct evidence for human presence in this region prior to the start of the Böiling Interstadial phase of the Lateglacial, c. 13,000 BP.


2015 ◽  
Vol 83 (2) ◽  
pp. 360-369 ◽  
Author(s):  
Fucai Duan ◽  
Jiangying Wu ◽  
Yongjin Wang ◽  
R. Lawrence Edwards ◽  
Hai Cheng ◽  
...  

A high-resolution, annual layer-counted and 230Th-dated multi-proxy record is constructed from a stalagmite in Hulu Cave, China. These proxies, including δ18O, annual layer thickness (ALT), gray level (GL) and Sr/Ca, cover a time span of ~ 3000 yr from 21 to 24 ka. The physical proxies (ALT and GL) and the geochemical index (Sr/Ca), all primarily reflecting karst hydrological processes, vary in concert and their coherence is supported by wavelet analyses. Variations in the δ18O data agree with fluctuations in the ALT and Sr/Ca records on multi-decadal to centennial scales, suggesting that the Hulu δ18O signal is strongly associated with varying local rainfall amounts on short timescales. A monsoon failure event at ~ 22.2 ka correlates with a decrease in tropical rainfall, a reduction in global CH 4 and an ice-rafted event in the North Atlantic. This correlation highlights roles of the Asian monsoon and tropical hydrological cycle in modulating global CH 4, because the high-latitude emission was inhibited during the Last Glacial Maximum (LGM). Spectral analysis of the δ18O record displays peaks at periodicities of 139, 59, 53, 43, 30, 23 and 19"15 yr. The absence of typical centennial solar cycles may be related to muted changes in ocean circulation during the LGM.


2014 ◽  
Vol 10 (6) ◽  
pp. 1939-1955 ◽  
Author(s):  
T. Caley ◽  
D. M. Roche ◽  
C. Waelbroeck ◽  
E. Michel

Abstract. We use the fully coupled atmosphere–ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 years). By using a model that is able to explicitly simulate the sensor (δ18O), results can be directly compared with data from climatic archives in the different realms. Our results indicate that iLOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean δ18O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice sheet. We observe a general pattern toward more enriched values for continental calcite δ18O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils. Data–model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data–model comparison for calcite δ18O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a strong mean annual cooling in the area south of Iceland and Greenland between the LGM and present (> 6 °C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data–model comparison also reveals that large positive calcite δ18O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive δ18Osw anomaly for the north Indian Ocean that contrasts with a large negative δ18Osw anomaly in the China Sea between the LGM and the present. This pattern may be linked to changes in the hydrological cycle over these regions. Our simulation of the deep ocean suggests that changes in δ18Osw between the LGM and the present are not spatially homogeneous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite δ18O data. Nonetheless, our data–model comparison supports a heterogeneous cooling of a few degrees (2–4 °C) in the LGM Ocean.


Sign in / Sign up

Export Citation Format

Share Document