Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial–Interglacial cycle

2012 ◽  
Vol 56 ◽  
pp. 1-10 ◽  
Author(s):  
Donald R. Prothero ◽  
Valerie J. Syverson ◽  
Kristina R. Raymond ◽  
Meena Madan ◽  
Sarah Molina ◽  
...  
2021 ◽  
Author(s):  
Janina J. (Bösken) Nett ◽  
Frank Lehmkuhl ◽  
Erik J. Schaffernicht ◽  
Stephan Pötter ◽  
Philipp Schulte ◽  
...  

<p>Loess is an important archive of environmental change covering approximately 10% of the Earth’s terrestrial surface. Numerous studies have analyzed loess deposits and in particular loess-paleosol sequences. To analyze these sequences, it is important to know the spatial distribution of aeolian sediments, their location relative to potential source areas, and the geomorphology of the sink area. We investigated these aspects by compiling a new map of aeolian sediments in Europe using highly resolved geodata from 27 countries (Lehmkuhl et al., in press). To determine the most relevant factors for the European loess distribution, we further mapped potential source areas and divided the map into different facies domains. We analyzed the geomorphological and paleoenvironmental effects on the deposition and preservation of Late Pleistocene loess. Finally, the geodata-based results were compared with results obtained from high-resolved regional numerical climate-dust experiments for the Last Glacial Maximum (LGM) in Europe, which were performed with the LGM-adapted Weather Research and Forecasting model coupled with Chemistry (WRF-Chem-LGM; Schaffernicht et al., 2020).  Complementing the mapping-based findings with the WRF-Chem-LGM experiments results in an improved understanding of the Late Pleistocene loess landscape in Europe.</p><p> </p><p>References:</p><p>Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S.B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., Hambach, U. (in press). Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews. Doi: https://doi.org/10.1016/j.earscirev.2020.103496</p><p>Schaffernicht, E.J., Ludwig, P., Shao, Y., 2020. Linkage between dust cycle and loess of the last Glacial Maximum in Europe. Atmospheric Chemistry and Physics 20, 4969–4986. Doi:10.5194/acp-20-4969-2020.</p>


2021 ◽  
Author(s):  
Luca Dimuccio ◽  
Thierry Aubry ◽  
Lúcio Cunha ◽  
Nelson Rodrigues

<p>In Portugal, climate fluctuations of Late Pleistocene are well-known from marine record on the western Iberian continental margin, particularly of Marine Isotope Stages 4, 3 and 2, and they include various events of secular abrupt climate changes. During cooling phases the Heinrich Events (HE) occurred, corresponding to episodes of massive ice-discharges from Northern Hemisphere ice sheets. Furthermore, several climate phases with relatively warmer conditions, known as Dansgaard-Oeschger (D-O) cycles, characterized by an abrupt warming (D-O event) followed by a more gradual cooling, took place in-between HE. This pronounced climate instability that characterizes the Last Glacial Period between ca. 80-12 ka is recorded in a variety of marine and terrestrial archives worldwide. It had a recognized impact on the bioclimatic zones and, possibly, on the Neanderthal and Anatomically Modern Human (AMH) settlements of Iberia.</p><p>Based mainly on the study of geoarchaeological records preserved in caves and rock-shelters of Iberia, a correlation framework with climate shifts has been proposed to explain the observed discontinuities between sequences containing late Middle and early Upper Palaeolithic remains. Moreover, a climate driven model has been advanced to explain the chronological differences between northern and southern Pyrenean data by a later dispersion of AMH and the persistence of last Neanderthals in Southern Iberia, which were interpreted as a direct impact of HE4 (40-38 ka) in the distribution of large ungulate populations.</p><p>Despite all these data, the exact impact of HE on terrestrial systems, the evaluation of the latitudinal differentiation of their impact and time-gap, as well as the correlation between periods of relative stabilization/soil formation and the D-O events remain to be clearly established. In addition, the whole framework relating to the Middle-to-Upper Palaeolithic transition has been excessively dependent on karst archives and it should be investigated in other geomorphological settings - among these the fluvial and Iberian plateau (“Meseta”), both present in the Côa Valley region (Douro Basin, north-east of Portugal). Alluvial and colluvial deposits preserved in the Côa Valley (e.g. at the Cardina-Salto do Boi, Quinta da Barca Sul, Penascosa, Fariseu, Olga de Ervamoira sites) have demonstrated to be a valuable record of information about Late Pleistocene sedimentary processes, depositional environments, and hunter-gatherer’s behaviour at local and regional scales.</p><p>In this context, the CLIMATE@COA project (COA/CAC/0031/2019), funded by the Fundação para a Ciência e Tecnologia (FCT), proposes an integrated multi/interdisciplinary approach based on the stratigraphical, sedimentological, geochemical, geomorphological, geoarchaeological, and geochronological analyses of terrestrial record (natural and cultural) preserved in the Côa Valley and surrounding plateau areas, with the aim to develop an evolutionary model for the region and to deduce the environmental forcing factors for such evolution - namely climate and ecosystem changes. In addition, the project’s data will allow to define better the chronology of the transition between Neanderthal and AMH and to infer on land use and social organization in its environmental context.</p>


2018 ◽  
Vol 45 (2) ◽  
pp. 161
Author(s):  
Rodrigo M. Vega ◽  
Mauricio Mella ◽  
Sven N. Nielsen ◽  
Mario Pino

Late Pleistocene sedimentary deposits outcropping around Valdivia city, locally known as Cancagua, have been subject of contrasting interpretations, from glacial to interglacial sediments. Opposing views emerge from focusing on upstream or coastal sedimentary controls, within a zone were these potentially overlap through a full glacial cycle. Here we present the first detailed facies analysis and a broad chronological framework, reconciling previous interpretations in a single paleogeographic model that encompasses the last glacial cycle. Seven facies associations are described, interpreted as an estuarine complex developed primarily during the last glacial cycle’s highstand, yet accumulating sediments during a substantial part of the falling stage. These results offer the opportunity to extend paleoenvironmental records through a full glacial cycle in northern Patagonia.


2004 ◽  
Vol 62 (3) ◽  
pp. 280-288 ◽  
Author(s):  
Kirsten M. Menking ◽  
Roger Y. Anderson ◽  
Nabil G. Shafike ◽  
Kamran H. Syed ◽  
Bruce D. Allen

Well-preserved shorelines in Estancia basin and a relatively simple hydrologic setting have prompted several inquiries into the basin's hydrologic balance for the purpose of estimating regional precipitation during the late Pleistocene. Estimates have ranged from 86% to 150% of modern, the disparity largely the result of assumptions about past temperatures. In this study, we use an array of models for surface-water runoff, groundwater flow, and lake energy balance to examine previously proposed scenarios for late Pleistocene climate. Constraints imposed by geologic evidence of past lake levels indicate that precipitation for the Last Glacial Maximum (LGM) may have doubled relative to modern values during brief episodes of colder and wetter climate and that annual runoff was as much as 15% of annual precipitation during these episodes.


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Alba Rey-Iglesia ◽  
Adrian M. Lister ◽  
Paula F. Campos ◽  
Selina Brace ◽  
Valeria Mattiangeli ◽  
...  

Late Quaternary climatic fluctuations in the Northern Hemisphere had drastic effects on large mammal species, leading to the extinction of a substantial number of them. The giant deer ( Megaloceros giganteus ) was one of the species that became extinct in the Holocene, around 7660 calendar years before present. In the Late Pleistocene, the species ranged from western Europe to central Asia. However, during the Holocene, its range contracted to eastern Europe and western Siberia, where the last populations of the species occurred. Here, we generated 35 Late Pleistocene and Holocene giant deer mitogenomes to explore the genetics of the demise of this iconic species. Bayesian phylogenetic analyses of the mitogenomes suggested five main clades for the species: three pre-Last Glacial Maximum clades that did not appear in the post-Last Glacial Maximum genetic pool, and two clades that showed continuity into the Holocene. Our study also identified a decrease in genetic diversity starting in Marine Isotope Stage 3 and accelerating during the Last Glacial Maximum. This reduction in genetic diversity during the Last Glacial Maximum, coupled with a major contraction of fossil occurrences, suggests that climate was a major driver in the dynamics of the giant deer.


2020 ◽  
Vol 97 ◽  
pp. 1-41 ◽  
Author(s):  
Erich C. Fisher ◽  
Hayley C. Cawthra ◽  
Irene Esteban ◽  
Antonieta Jerardino ◽  
Frank H. Neumann ◽  
...  

AbstractWaterfall Bluff is a rock shelter in eastern Pondoland, South Africa, adjacent to a narrow continental shelf that limited coastline movements across glacial/interglacial cycles. The archaeological deposits are characterized by well-preserved stratigraphy, faunal, and botanical remains alongside abundant stone artifacts and other materials. A comprehensive dating protocol consisting of 5 optically stimulated luminescence ages and 51 accelerator mass spectrometry 14C ages shows that the record of hunter-gatherer occupations at Waterfall Bluff persisted from the late Pleistocene to the Holocene, spanning the last glacial maximum and the transition from the Pleistocene to the Holocene. Here, we provide detailed descriptions about the sedimentary sequence, chronology, and characteristics of the archaeological deposits at Waterfall Bluff. Remains of marine mollusks and marine fish also show, for the first time, that coastal foraging was a component of some hunter-gatherer groups’ subsistence practices during glacial phases in the late Pleistocene. The presence of marine fish and shellfish further demonstrates that hunter-gatherers selectively targeted coastal resources from intertidal and estuarine habitats. Our results therefore underscore the idea that Pondoland's coastline remained a stable and predictable point on the landscape over the last glacial/interglacial transition being well positioned for hunter-gatherers to access resources from the nearby coastline, narrow continental shelf, and inland areas.


2013 ◽  
Vol 9 (4) ◽  
pp. 20130281 ◽  
Author(s):  
Saoirse A. Leonard ◽  
Claire L. Risley ◽  
Samuel T. Turvey

Brown bears are recorded from Ireland during both the Late Pleistocene and early–mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British–Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear–polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions.


Sign in / Sign up

Export Citation Format

Share Document