The signature of strain magnitude in tills associated with the Vistula Ice Stream of the Scandinavian Ice Sheet, central Poland

2012 ◽  
Vol 57 ◽  
pp. 105-120 ◽  
Author(s):  
Włodzimierz Narloch ◽  
Jan A. Piotrowski ◽  
Wojciech Wysota ◽  
Nicolaj K. Larsen ◽  
John Menzies
1999 ◽  
Vol 28 ◽  
pp. 83-89 ◽  
Author(s):  
A. J. Payne ◽  
D.J. Baldwin

AbstractThis work attempts to explain the fan-like landform assemblages observed in satellite images of the area covered by the former Scandinavian ice sheet (SIS). These assemblages have been interpreted as evidence of large ice streams within the SIS. If this interpretation is correct, then it calls into doubt current theories on the formation of ice streams. These theories regard soft sediment and topographic troughs as being the key determinants of ice-stream location. Neither can be used to explain the existence of ice streams on the flat, hard-rock area of the Baltic Shield. Initial results from a three-dimensional, thermomechanical ice-sheet model indicate that interactions between ice flow, form and temperature can create patterns similar to those mentioned above. The model uses a realistic, 20 km resolution gridded topography and a simple parameterization of accumulation and ablation. It produces patterns of maximum ice-sheet extent, which are similar to those reconstructed from the area’s glacial geomorphology. Flow in the maximum, equilibrium ice sheet is dominated by wedges of warm, low-viscosity, fast-flowing ice. These are separated by areas of cold, slow-flowing ice. This patterning appears to develop spontaneously as the modelled ice sheet grows.


2021 ◽  
Author(s):  
Izabela Szuman ◽  
Jakub Z. Kalita ◽  
Marek W. Ewertowski ◽  
Chris D. Clark ◽  
Stephen J. Livingstone ◽  
...  

Abstract. Here we present a comprehensive dataset of glacial geomorphological features covering an area of 65 000 km2 in central west Poland, located along the southern sector of the last Scandinavian Ice Sheet, within the limits of the Baltic Ice Stream Complex. The GIS dataset is based on mapping from a 0.4 m high-resolution Digital Elevation Model derived from airborne Light Detection and Ranging data. Ten landform types have been mapped: Mega-Scale Glacial Lineations, drumlins, marginal features (moraine chains, abrupt margins, edges of ice-contact fans), ribbed moraines, tunnel valleys, eskers, geometrical ridge networks and hill-hole pairs. The map comprises 5461 individual landforms or landform parts, which are available as vector layers in GeoPackage format at http://doi.org/10.5281/zenodo.4570570 (Szuman et al., 2021a). These features constitute a valuable data source for reconstructing and modelling the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian Scandinavian Ice Sheet advance, 50–30 ka BP, through the Last Glacial Maximum, 25–21 ka BP and Young Baltic Advances, 18–15 ka BP. The presented data are particularly useful for modellers, geomorphologists and glaciologists.


2021 ◽  
Vol 13 (10) ◽  
pp. 4635-4651
Author(s):  
Izabela Szuman ◽  
Jakub Z. Kalita ◽  
Marek W. Ewertowski ◽  
Chris D. Clark ◽  
Stephen J. Livingstone ◽  
...  

Abstract. Here we present a comprehensive dataset of glacial geomorphological features covering an area of 65 000 km2 in central west Poland, located along the southern sector of the last Scandinavian Ice Sheet, within the limits of the Baltic Ice Stream Complex. The GIS dataset is based on mapping from a 0.4 m high-resolution digital elevation model derived from airborne light detection and ranging data. Ten landform types have been mapped: mega-scale glacial lineations, drumlins, marginal features (moraine chains, abrupt margins, edges of ice-contact fans), ribbed moraines, tunnel valleys, eskers, geometrical ridge networks, and hill–hole pairs. The map comprises 5461 individual landforms or landform parts, which are available as vector layers in GeoPackage format at https://doi.org/10.5281/zenodo.4570570 (Szuman et al., 2021a). These features constitute a valuable data source for reconstructing and modelling the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian Scandinavian Ice Sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka. The presented data are particularly useful for modellers, geomorphologists, and glaciologists.


Sign in / Sign up

Export Citation Format

Share Document