Deformation mechanisms and kinematics of a soft sedimentary bed beneath the Scandinavian Ice Sheet, north-central Poland, revealed by magnetic fabrics

2021 ◽  
Vol 416 ◽  
pp. 105862
Author(s):  
Włodzimierz Narloch ◽  
Tomasz Werner ◽  
Karol Tylmann
2012 ◽  
Vol 57 ◽  
pp. 105-120 ◽  
Author(s):  
Włodzimierz Narloch ◽  
Jan A. Piotrowski ◽  
Wojciech Wysota ◽  
Nicolaj K. Larsen ◽  
John Menzies

2020 ◽  
Vol 109 (8) ◽  
pp. 2699-2717
Author(s):  
Robert J. Sokołowski ◽  
Wojciech Wysota

Abstract We reconstruct patterns of subglacial processes on a hard bedrock and a soft bed under the southern sector of Scandinavian Ice Sheet (SIS) occurring in the basal till of the Late Saalian Glaciation at the Wapienno, Barcin and Młodocin sites (north-central Poland). Based on detailed sedimentological studies, two phases of SIS transgression were recognised. In the initial phase of the transgression, the SIS advanced onto a frozen substrate (continuous permafrost). The low permeability of the substratum led to a high subglacial water pressure (SWP) and increased basal sliding. The local increase of SWP led to the development of different types of structures and sediments. On a hard bedrock, with low SWP, abrasion predominated and linear structures were developing, while in the case of high SWP, the ice was decoupled from the hard substrate, pressurised liquefied sediment flowed, and structures of the p-form and s-form type developed. On a soft bed, the ice-bed contact was of a mosaic type and the ice movement had an ice-stream character. The ice-stream developed towards the east in the marginal zone of the SIS and used a W-E oriented valley filled by the Wapienno Formation fluvial complex. During a later phase, the ice movement was slower and did not have a stream character. Its direction changed to SE. The deposition of the main part of the diamicton occurred mainly as a result of the lodgement process.


2020 ◽  
Vol 12 (1) ◽  
pp. 753-763
Author(s):  
Magdalena Anna Drążczyk

AbstractThe occurrence of end moraines reflects the dynamics of an ice sheet, and their inner structure is determined by processes taking place in marginal zones. In the southern part of the Kłodawa Upland of Central Poland, such moraines were formed, but opinions conflict as to their origin, including the influence of local transgression of the ice sheet, as well as its areal and frontal recession. The primary aim of this article is to analyse the inner structure of forms to define the dynamic state of the Warta Stadial ice sheet of the Odra Glaciation (Saalian). The conducted research includes fieldwork at four key sites, where lithofacial analysis was performed, as well as a geomorphological and geological mapping that included two cross-sections in greater detail. In exposures, the work focused on deformed structures of sediments. Description of key sites was extended by the creation and the analysis of general geological cross-sections. Considering the results of the research, the Kutno end moraines should not be classified as push moraines – they were revealed to be accumulative in character.


2020 ◽  
Vol 124 ◽  
pp. 105264
Author(s):  
Wiesław Lorkiewicz ◽  
Justyna Karkus ◽  
Joanna Mietlińska ◽  
Michał Stuss ◽  
Ewa Sewerynek ◽  
...  

1999 ◽  
Vol 28 ◽  
pp. 83-89 ◽  
Author(s):  
A. J. Payne ◽  
D.J. Baldwin

AbstractThis work attempts to explain the fan-like landform assemblages observed in satellite images of the area covered by the former Scandinavian ice sheet (SIS). These assemblages have been interpreted as evidence of large ice streams within the SIS. If this interpretation is correct, then it calls into doubt current theories on the formation of ice streams. These theories regard soft sediment and topographic troughs as being the key determinants of ice-stream location. Neither can be used to explain the existence of ice streams on the flat, hard-rock area of the Baltic Shield. Initial results from a three-dimensional, thermomechanical ice-sheet model indicate that interactions between ice flow, form and temperature can create patterns similar to those mentioned above. The model uses a realistic, 20 km resolution gridded topography and a simple parameterization of accumulation and ablation. It produces patterns of maximum ice-sheet extent, which are similar to those reconstructed from the area’s glacial geomorphology. Flow in the maximum, equilibrium ice sheet is dominated by wedges of warm, low-viscosity, fast-flowing ice. These are separated by areas of cold, slow-flowing ice. This patterning appears to develop spontaneously as the modelled ice sheet grows.


2001 ◽  
Vol 31 (1-4) ◽  
pp. 407-425 ◽  
Author(s):  
Juha Pekka Lunkka ◽  
Matti Saarnisto ◽  
Valeri Gey ◽  
Igor Demidov ◽  
Vera Kiselova

Sign in / Sign up

Export Citation Format

Share Document