Sedimentological record of subglacial conditions and ice sheet dynamics of the Vistula Ice Stream (north-central Poland) during the Last Glaciation

2013 ◽  
Vol 293 ◽  
pp. 30-44 ◽  
Author(s):  
Włodzimierz Narloch ◽  
Wojciech Wysota ◽  
Jan A. Piotrowski
2020 ◽  
Vol 109 (8) ◽  
pp. 2699-2717
Author(s):  
Robert J. Sokołowski ◽  
Wojciech Wysota

Abstract We reconstruct patterns of subglacial processes on a hard bedrock and a soft bed under the southern sector of Scandinavian Ice Sheet (SIS) occurring in the basal till of the Late Saalian Glaciation at the Wapienno, Barcin and Młodocin sites (north-central Poland). Based on detailed sedimentological studies, two phases of SIS transgression were recognised. In the initial phase of the transgression, the SIS advanced onto a frozen substrate (continuous permafrost). The low permeability of the substratum led to a high subglacial water pressure (SWP) and increased basal sliding. The local increase of SWP led to the development of different types of structures and sediments. On a hard bedrock, with low SWP, abrasion predominated and linear structures were developing, while in the case of high SWP, the ice was decoupled from the hard substrate, pressurised liquefied sediment flowed, and structures of the p-form and s-form type developed. On a soft bed, the ice-bed contact was of a mosaic type and the ice movement had an ice-stream character. The ice-stream developed towards the east in the marginal zone of the SIS and used a W-E oriented valley filled by the Wapienno Formation fluvial complex. During a later phase, the ice movement was slower and did not have a stream character. Its direction changed to SE. The deposition of the main part of the diamicton occurred mainly as a result of the lodgement process.


2021 ◽  
Author(s):  
Mohamed Elhebiry ◽  
Mohamed Sultan ◽  
Abotalib Abotalib ◽  
Alan Kehew ◽  
Peter Voice ◽  
...  

Abstract Mega-streamlined landforms on Earth and Mars have been attributed to aeolian, glaciogenic, fluvial, and tectonic processes. Identifying the forces that shaped these landforms is paramount for understanding landscape evolution and constraining paleo-climate models and ice sheet reconstructions. In Arabia, east-northeast, kilometer-scale streamlined landforms were interpreted to have been formed by Quaternary aeolian erosion. We provide field and satellite-based evidence for a Late Ordovician glacial origin for these streamlined landforms, which were exhumed during the Red Sea–related uplift. Then we use Late Ordovician paleo-topographic data to reconstruct the Late Ordovician ice sheet using identified and previously reported glacial deposits and landforms. Our reconstruction suggests these glacial features are part of a major, topographically controlled, marine-terminating ice stream, twice the length of the largest known terrestrial ice streams. Our results support models that advocate for a single, major, and highly dynamic ice sheet and provide new morphological-based constraints for Late Ordovician climate models.


2012 ◽  
Vol 57 ◽  
pp. 105-120 ◽  
Author(s):  
Włodzimierz Narloch ◽  
Jan A. Piotrowski ◽  
Wojciech Wysota ◽  
Nicolaj K. Larsen ◽  
John Menzies

2005 ◽  
Vol 42 ◽  
pp. 135-144 ◽  
Author(s):  
Hernán De Angelis ◽  
Johan Kleman

AbstractEvidence for ice streams in the Laurentide ice sheet is widespread. In the region of northern Keewatin and the Boothia Peninsula, Nunavut, Canada, palaeo-ice streams have been recognized, but their location, size and potential role in ice-sheet dynamics are poorly constrained. Based on the interpretation of satellite imagery, we produce a palaeo-ice-stream map of this region. Glacial directional landforms, eskers and moraines were mapped and integrated into landform assemblages using a glacial geological inversion model. Palaeo-frozen bed areas were also identified. Relative age of the geomorphic swarms was assessed by cross-cutting relationships and radiocarbon ages where available. Using this information we obtained a glaciologically plausible picture of ice-stream evolution within the northernmost Laurentide ice sheet. On the M’Clintock Channel corridor, three generations of pure ice streams are found. On Baffin Island and the Gulf of Boothia, glaciation was dominated by frozen-bed zones located on high plateaus and ice streams running along the troughs, i.e. topographic ice streams. A massive convergent pattern at the head of Committee Bay drained ice from both the Keewatin and Foxe sectors and was probably one of the main deglaciation channels of the Laurentide ice sheet. Finally, our results indicate that streaming flow was present in the deep interior of the Laurentide ice sheet, as recently shown for the Greenland and Antarctic ice sheets.


2004 ◽  
Vol 42 (1-4) ◽  
pp. 59-81 ◽  
Author(s):  
Pirjo-Leena Forsström ◽  
Ralf Greve

2020 ◽  
Vol 14 (12) ◽  
pp. 4475-4494
Author(s):  
Ingrid Leirvik Olsen ◽  
Tom Arne Rydningen ◽  
Matthias Forwick ◽  
Jan Sverre Laberg ◽  
Katrine Husum

Abstract. The presence of a grounded Greenland Ice Sheet on the northeastern part of the Greenland continental shelf during the Last Glacial Maximum is supported by new swath bathymetry and high-resolution seismic data, supplemented with multi-proxy analyses of sediment gravity cores from Store Koldewey Trough. Subglacial till fills the trough, with an overlying drape of maximum 2.5 m thick glacier-proximal and glacier-distal sediment. The presence of mega-scale glacial lineations and a grounding zone wedge in the outer part of the trough, comprising subglacial till, provides evidence of the expansion of fast-flowing, grounded ice, probably originating from the area presently covered with the Storstrømmen ice stream and thereby previously flowing across Store Koldewey Island and Germania Land. Grounding zone wedges and recessional moraines provide evidence that multiple halts and/or readvances interrupted the deglaciation. The formation of the grounding zone wedges is estimated to be at least 130 years, while distances between the recessional moraines indicate that the grounding line locally retreated between 80 and 400 m yr−1 during the deglaciation, assuming that the moraines formed annually. The complex geomorphology in Store Koldewey Trough is attributed to the trough shallowing and narrowing towards the coast. At a late stage of the deglaciation, the ice stream flowed around the topography on Store Koldewey Island and Germania Land, terminating the sediment input from this sector of the Greenland Ice Sheet to Store Koldewey Trough.


Sign in / Sign up

Export Citation Format

Share Document