scholarly journals Landscape dynamics and fire regime since 17,550 cal yr BP in the Cantabrian region (La Molina peat bog, Puente Viesgo, Spain)

2022 ◽  
Vol 278 ◽  
pp. 107373
Author(s):  
Marc Sánchez-Morales ◽  
Albert Pèlachs ◽  
Juan Carlos García-Codron ◽  
Virginia Carracedo ◽  
Ramon Pérez-Obiol
2016 ◽  
Vol 135 ◽  
pp. 65-78 ◽  
Author(s):  
R. Pérez-Obiol ◽  
J.C. García-Codron ◽  
A. Pèlachs ◽  
A. Pérez-Haase ◽  
J.M. Soriano

Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 44 ◽  
Author(s):  
Cristina Montiel-Molina ◽  
Lara Vilar ◽  
Catarina Romão Sequeira ◽  
Oskar Karlsson ◽  
Luis Galiana-Martín ◽  
...  

Fire is one of the main disturbance factors shaping the landscape, and landscape is a key driver of fire behavior. Considering the role played by land use and land cover (LULC) changes as the main driver of landscape dynamics, the aim of this study was to calculate and analyze (i) the real impact of fire on LULC changes and (ii) how these LULC changes were influencing the fire regime. We used methods of historical geography and socio-spatial systemic analysis for reconstructing and assessing the LULC change and fire history in six case studies in the Central Mountain System (Spain) from archival documentary sources and historical cartography. The main result is an accurate dataset of fire records from 1497 to 2013 and a set of LULC maps for three time points (1890s–1930s, 1956–1957, and the 2000s). We have shown the nonlinear evolution of the fire regime and the importance of the local scale when assessing the interaction of landscape dynamics and fire regime variation. Our findings suggest that LULC trends have been the main influencing factor of fire regime variation in Central Spain since the mid-19th century.


2020 ◽  
Vol 46 (1) ◽  
pp. 103-126
Author(s):  
C.R. Sequeira ◽  
C. Montiel-Molina ◽  
F.C. Rego

Wildfires have been a major landscape disturbance factor throughout history in inland mountain areas of Spain. This paper aims to understand the interaction of fire regimes and landscape dynamics during the last two centuries within a socio-spatial context. The study area selected for this historical and spatial analysis is the Ayllón massif, in the Central Mountain Range. The theoretical background used to identify the driving forces of fire regime changes over the 19th and 20th centuries in this mountain area includes landscape-based fire scenarios and fire-type concepts. Both concepts have been addressed in recent studies from a spatial planning and fire management approach in an attempt to understand current fire landscapes and wildfire risk. However, this is the first time that these concepts have been applied to show that both spatial and temporal scales are crucial for an understanding of the current wildfire panorama, and that fire history related to landscape dynamics is fundamental in socio-spatial differences in fire regimes.Four variables (fire history, land use, population and settlement system, and forest management) were assessed to define historical landscape-based fire scenarios, and three fire feature variables (fire extent, fire cause, and spatial distribution pattern) were considered to define historical fire-types. We found that the non-linear evolution of fire regimes during the 19th and 20th centuries was determined by fire-type changes according to landscape dynamics. Moreover, population and forest management have been the main driving forces of fire regime tipping points or pyrotransitions. This study validates the hypothesis that fire regime changes are the result of the interaction of fire history and landscape dynamics.


2019 ◽  
Vol 233 ◽  
pp. 427-439 ◽  
Author(s):  
Cristina Montiel Molina ◽  
Oskar Karlsson Martín ◽  
Luis Galiana Martín

Author(s):  
Tayeb Sitayeb ◽  
Ishak Belabbes

Abstract Landscape dynamics is the result of interactions between social systems and the environment, these systems evolving significantly over time. climatic conditions and biophysical phenomena are the main factors of landscape dynamics. Also, currently man is responsible for most changes affecting natural ecosystems. The objective of this work is to study the dynamics of a typical landscape of western Algeria in time and space, and to map the distribution of vegetation groups constitute the vegetation cover of this ecosystem. as well as using a method of monitoring the state of a fragile ecosystem by remote sensing to understand the processes of changes in this area. The steppe constitutes a large arid area, with little relief, covered with low and sparse vegetation. it lies between the annual isohyets of 100 to 400 mm, subjected to a very old human exploitation with an activity of extensive breeding of sheep, goats, and camels. Landsat satellite data were used to mapping vegetation groups in the Mecheria Steppe at a scale of 1: 300,000. Then, a comparison was made between the two maps obtained by a classification of Landsat-8 sensor Operational Land Imager (OLI) acquired on March 18, 2014, and Landsat-5 sensor Thematic Mapper (TM) acquired on April 25, 1987. The results obtained show the main changes affecting the natural distribution of steppe species, a strong change in land occupied by the Stipa tenacissima steppe with 65% of change, this steppe is replaced by Thymelaea microphylla, Salsola vermiculata, lygeum spartum and Peganum harmala steppe. an absence from the steppe Artemisia herba-alba that has also been replaced by the same previous steppes species. The groups with Quercus ilex and Juniperus phoenicea are characterized by a strong regression that was lost 60% of its global surface and transformed by steppe to stipa tenacissima and bare soil.


Author(s):  
Robert E. Kennedy ◽  
Warren B. Cohen ◽  
Alan A. Kirschbaum ◽  
Erik Haunreiter

Sign in / Sign up

Export Citation Format

Share Document