An efficient machine tool control instruction compression method for networked numerical control systems

2021 ◽  
Vol 67 ◽  
pp. 102027
Author(s):  
Miao Liu ◽  
Yingxue Yao ◽  
Jianjun Du
Author(s):  
Hongwei Liu ◽  
Rui Yang ◽  
Pingjiang Wang ◽  
Jihong Chen ◽  
Hua Xiang

The objective of this research is to develop a novel correction mechanism to reduce the fluctuation range of tools in numerical control (NC) machining. Error compensation is an effective method to improve the machining accuracy of a machine tool. If the difference between two adjacent compensation data is too large, the fluctuation range of the tool will increase, which will seriously affect the surface quality of the machined parts in mechanical machining. The methodology used in compensation data processing is a simplex method of linear programming. This method reduces the fluctuation range of the tool and optimizes the tool path. The important aspect of software error compensation is to modify the initial compensation data by using an iterative method, and then the corrected tool path data are converted into actual compensated NC codes by using a postprocessor, which is implemented on the compensation module to ensure a smooth running path of the tool. The generated, calibrated, and amended NC codes were immediately fed to the machine tool controller. This technique was verified by using repeated measurements. The results of the experiments demonstrate efficient compensation and significant improvement in the machining accuracy of the NC machine tool.


2021 ◽  
Author(s):  
Xinxin LI ◽  
Zhi-Min Li ◽  
Sun Jin ◽  
Jichang Zhang ◽  
Siyi Ding ◽  
...  

Abstract The kinematic errors of the linear axis play a key role in machining precision of high-end CNC (Computer Numerical Control) machine tool. The quantification of error relationship is still an urgent problem to be solved in the assembly process of the linear axis, especially considering the effect of the elastic deformation of rollers. A systematic error equivalence model of slider is proposed to improve the prediction accuracy for kinematic errors of the linear axis which contains the base, the linear guide rail and carriage. Firstly, the geometric errors of assembly surface of linear guide rail are represented by small displacement torsor. According to the theory of different motion of robots, the error equivalence model of a single slider is established, namely the geometric error of assembly surface of linear guide rail and the pose error of slider is equivalent to the elastic deformation of roller. Based on the principle of vector summation, the kinematic error of a single slider is mapped to the carriage and the kinematic error of the linear axis is obtained. Besides, experiments validation of kinematic error model of the linear axis is carried out. It is indicated that the proposed model is accurate and feasible. The proposed model can provide an accurate guidance for the manufacturing and operation performance of the linear axis in quantification, and a more effective reference for the engineers at the design and assembly stage.


Author(s):  
Yan Ran ◽  
Teng Zhang ◽  
Zongyi Mu ◽  
Genbao Zhang ◽  
Hongwei Wang ◽  
...  

Since computer numerical control machine tool is composed of multiple meta-action units to achieve one specific function, including the meta-action units' own quality, it still needs to control the coupling relationships among different meta-action units' quality characteristics to guarantee the whole machine's quality. In this article, a method of quality characteristic decoupling planning based on meta-action unit for computer numerical control machine tool was proposed. Firstly, the coupling constraint models based on meta-action unit were established. Secondly, the comprehensive coupling strengths of meta-action units were calculated and introduced into the design structure matrices. Thirdly, multidisciplinary design optimization method was adopted to obtain the optimized control sequence of different meta-action units' quality characteristics. What is more, automatic pallet changer rotary motion of computer numerical control machine tool was taken as an example to illustrate the rightness and effectiveness of this method.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 748
Author(s):  
Qi Liu ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
Yu Qiao ◽  
Qian Cheng ◽  
...  

The drive at the center of gravity (DCG) principle has been adopted in computer numerical control (CNC) machines and industrial robots that require heavy-duty and quick feeds. Using this principle requires accurate corrections of positioning errors. Conventional error compensation methods may cause vibrations and unstable control performances due to the delay between compensation and motor motion. This paper proposes a new method to reduce the positioning errors of the dual-driving gantry-type machine tool (DDGTMT), namely, a typical DCG-principle-based machine tool. An error prediction method is proposed to characterize errors online. An algorithm is proposed to quickly and accurately compensate the errors of the DDGTMT. Experiment results verify that the non-delay error compensation method proposed in this paper can effectively improve the accuracy of the DDGTMT.


2012 ◽  
Vol 246-247 ◽  
pp. 57-61
Author(s):  
Lin Li ◽  
Chan Ji Shan ◽  
Jun Luo ◽  
Nan Xu

With the development of linux and μC/O dual-core embedded operating system, its research areas have been broadened wider and wider. This paper aims to illustrate its importance in engineering practice on the basis of its application in the technological process of injection molding machines and numerical control machines to arrive at its natural conclusion that dual-core system has a brighter and wider prospect by using Linux and μC /OS to solve the problems of Linux because it is more and more widely applied in engineering, mechanical control systems and many other fields such as mobile communications as well as digitalized network, and now is becoming more and more demanded with the rapid development of scientific technology.


Sign in / Sign up

Export Citation Format

Share Document