A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions

2020 ◽  
Vol 146 ◽  
pp. 104397 ◽  
Author(s):  
Alireza Saeedi-Jurkuyeh ◽  
Ahmad Jonidi Jafari ◽  
Roshanak Rezaei Kalantary ◽  
Ali Esrafili
2021 ◽  
pp. 111040
Author(s):  
Ping Li ◽  
Yu-Xuan Li ◽  
Yu-Zhe Wu ◽  
Zhen-Liang Xu ◽  
Hai-Zhen Zhang ◽  
...  

2019 ◽  
Vol 215 ◽  
pp. 1233-1245 ◽  
Author(s):  
Ali Maleki ◽  
Zoleikha Hajizadeh ◽  
Vajiheh Sharifi ◽  
Zeynab Emdadi

2018 ◽  
Vol 90 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Bianca Maranescu ◽  
Lavinia Lupa ◽  
Aurelia Visa

AbstractThe increase attention in the area of phosphonate metal organic framework is exemplified with a variety of applications and a rich chemistry of these compounds. Water pollution caused by heavy metal ions is a major concern due to their toxicity to many life forms. In order to decrease the heavy metals impact upon the environment various technologies of water treatment such as: chemical sedimentation, ion exchange, redox process are studied. The tendency is to find a versatile and economical method of heavy metals removal from waste waters. Phosphonate metal organic frameworks were obtained by the reaction of Ni(CH3COO)2·4H2O, phosphonic acid (phosphonoacetic (CP), vinyl phosphonic acid (VP) and N,N-bis(phosphonomethyl)glycine (Gly)) in hydrothermal conditions. Coordination polymers synthesized were characterized by FTIR, XRD, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The adsorption processes represent a very good alternative for heavy metals removal due to low costs and ease of operation. In the present paper the adsorption performance of the mentioned materials in the removal process of heavy metals from aqueous solutions, was studied using the batch method. The adsorption conditions were investigated by varying the initial pH, contact time and adsorbate initial concentration for chromium metal ions removal from aqueous solutions. It was found that the adsorption efficiency of the studied materials in the removal process of Cr(VI) ions from aqueous solutions is in the following order: Ni-CP<Ni-Gly≤Ni-VP.


Sign in / Sign up

Export Citation Format

Share Document