scholarly journals HDAC inhibition induces EMT and alterations in cellular iron homeostasis to augment ferroptosis sensitivity in SW13 cells

Redox Biology ◽  
2021 ◽  
Vol 47 ◽  
pp. 102149
Author(s):  
Thais Oliveira ◽  
Evan Hermann ◽  
Daniel Lin ◽  
Winyoo Chowanadisai ◽  
Elizabeth Hull ◽  
...  
2014 ◽  
Vol 15 (12) ◽  
pp. 1125-1140 ◽  
Author(s):  
Mohsin Raza ◽  
Sankalpa Chakraborty ◽  
Monjoy Choudhury ◽  
Prahlad Ghosh ◽  
Alo Nag

2021 ◽  
Vol 39 (S2) ◽  
Author(s):  
J. Devin ◽  
T. Cañeque ◽  
Y.‐L. Lin ◽  
L. Mondoulet ◽  
J.‐L. Veyrune ◽  
...  

Blood ◽  
2005 ◽  
Vol 105 (5) ◽  
pp. 2161-2167 ◽  
Author(s):  
Guangjun Nie ◽  
Alex D. Sheftel ◽  
Sangwon F. Kim ◽  
Prem Ponka

AbstractCytosolic ferritin sequesters and stores iron and, consequently, protects cells against iron-mediated free radical damage. However, the function of the newly discovered mitochondrial ferritin (MtFt) is unknown. To examine the role of MtFt in cellular iron metabolism, we established a cell line that stably overexpresses mouse MtFt under the control of a tetracycline-responsive promoter. The overexpression of MtFt caused a dose-dependent iron deficiency in the cytosol that was revealed by increased RNA-binding activity of iron regulatory proteins (IRPs) along with an increase in transferrin receptor levels and decrease in cytosolic ferritin. Consequently, the induction of MtFt resulted in a dramatic increase in cellular iron uptake from transferrin, most of which was incorporated into MtFt. The induction of MtFt caused a shift of iron from cytosolic ferritin to MtFt. In addition, iron inserted into MtFt was less available for chelation than that in cytosolic ferritin and the expression of MtFt was associated with decreased mitochondrial and cytosolic aconitase activities, the latter being consistent with the increase in IRP-binding activity. In conclusion, our results indicate that overexpression of MtFt causes a dramatic change in intracellular iron homeostasis and that shunting iron to MtFt likely limits its availability for active iron proteins.


2009 ◽  
Vol 105 (5) ◽  
pp. 801-810 ◽  
Author(s):  
Leonor Ramirez ◽  
Eduardo Julián Zabaleta ◽  
Lorenzo Lamattina

1999 ◽  
Vol 96 (10) ◽  
pp. 5434-5439 ◽  
Author(s):  
L. Salter-Cid ◽  
A. Brunmark ◽  
Y. Li ◽  
D. Leturcq ◽  
P. A. Peterson ◽  
...  

2012 ◽  
Vol 288 (3) ◽  
pp. 1696-1705 ◽  
Author(s):  
Vinay A. Patil ◽  
Jennifer L. Fox ◽  
Vishal M. Gohil ◽  
Dennis R. Winge ◽  
Miriam L. Greenberg

2018 ◽  
Vol 115 (39) ◽  
pp. E9085-E9094 ◽  
Author(s):  
Oliver Stehling ◽  
Jae-Hun Jeoung ◽  
Sven A. Freibert ◽  
Viktoria D. Paul ◽  
Sebastian Bänfer ◽  
...  

Maturation of iron-sulfur (Fe-S) proteins in eukaryotes requires complex machineries in mitochondria and cytosol. Initially, Fe-S clusters are assembled on dedicated scaffold proteins and then are trafficked to target apoproteins. Within the cytosolic Fe-S protein assembly (CIA) machinery, the conserved P-loop nucleoside triphosphatase Nbp35 performs a scaffold function. In yeast, Nbp35 cooperates with the related Cfd1, which is evolutionary less conserved and is absent in plants. Here, we investigated the potential scaffold function of human CFD1 (NUBP2) in CFD1-depleted HeLa cells by measuring Fe-S enzyme activities or 55Fe incorporation into Fe-S target proteins. We show that CFD1, in complex with NBP35 (NUBP1), performs a crucial role in the maturation of all tested cytosolic and nuclear Fe-S proteins, including essential ones involved in protein translation and DNA maintenance. CFD1 also matures iron regulatory protein 1 and thus is critical for cellular iron homeostasis. To better understand the scaffold function of CFD1-NBP35, we resolved the crystal structure of Chaetomium thermophilum holo-Cfd1 (ctCfd1) at 2.6-Å resolution as a model Cfd1 protein. Importantly, two ctCfd1 monomers coordinate a bridging [4Fe-4S] cluster via two conserved cysteine residues. The surface-exposed topology of the cluster is ideally suited for both de novo assembly and facile transfer to Fe-S apoproteins mediated by other CIA factors. ctCfd1 specifically interacted with ATP, which presumably associates with a pocket near the Cfd1 dimer interface formed by the conserved Walker motif. In contrast, ctNbp35 preferentially bound GTP, implying differential regulation of the two fungal scaffold components during Fe-S cluster assembly and/or release.


2019 ◽  
Vol 12 (3) ◽  
pp. 125 ◽  
Author(s):  
Samira Lakhal-Littleton

Iron deficiency is the most common nutritional disorder in the world. It is prevalent amongst patients with cardiovascular disease, in whom it is associated with worse clinical outcomes. The benefits of iron supplementation have been established in chronic heart failure, but data on their effectiveness in other cardiovascular diseases are lacking or conflicting. Realising the potential of iron therapies in cardiovascular disease requires understanding of the mechanisms through which iron deficiency affects cardiovascular function, and the cell types in which such mechanisms operate. That understanding has been enhanced by recent insights into the roles of hepcidin and iron regulatory proteins (IRPs) in cellular iron homeostasis within cardiovascular cells. These studies identify intracellular iron deficiency within the cardiovascular tissue as an important contributor to the disease process, and present novel therapeutic strategies based on targeting the machinery of cellular iron homeostasis rather than direct iron supplementation. This review discusses these new insights and their wider implications for the treatment of cardiovascular diseases, focusing on two disease conditions: chronic heart failure and pulmonary arterial hypertension.


Sign in / Sign up

Export Citation Format

Share Document