Analysis on the feasibility of biomass power plants adding to the electric power system – Economic, regulatory and market aspects – State of Pará, Brazil

2011 ◽  
Vol 36 (6) ◽  
pp. 1678-1684 ◽  
Author(s):  
Gonçalo Rendeiro ◽  
Emanuel N. Macedo ◽  
Giorgiana Pinheiro ◽  
João Pinho
2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


2019 ◽  
Vol 29 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Evgeniia Markova ◽  
Inna Sidler

Our paper addresses an integral model of the large electric power system optimal development. The model takes into account the age structure of the main equipment, which is divided into several types regarding its technical characteristics. This mathematical model is a system of Volterra type integral equations with variable integration limits. The system describes the balance between the given demand for electricity, the commissioning of new equipment and the dismantling of obsolete equipment, as well as the shares of different types of power plants in the total composition of the electric power system equipment. Based on the developed model, we got numerical solution to the problem of finding the optimal strategy for replacing equipment with a minimum of the cost functional. The case study is the Unified Electric Power System of Russia. Calculations of the forecast for development of the electric power system of Russia until 2050 were made using real-life data.


2019 ◽  
Vol 139 ◽  
pp. 01009
Author(s):  
Murodilla Mukhammadiev ◽  
Boborakhim Urishev ◽  
Shirin Esemuratova ◽  
Nigina Djumaniyozova

This article deals with the analysis and development perspectives of the use pumped storage power plants use to increase the reliability and regime controllability of electric power systems of the Republic of Uzbekistan.


2020 ◽  
Vol 216 ◽  
pp. 01139
Author(s):  
Yu.S. Vasilyev ◽  
V.V. Elistratov ◽  
I.G. Kudryasheva ◽  
M.M. Mukhammadiyev ◽  
B.U. Urishev

The possibilities of using shunting properties of HPP units, HAPS (Hydro-accumulating power system) for energy storage and redistribution, as well as Pump Station as a consumer of the regulator in night load dips to increase the reliability of the electric power system (EPS) in the conditions of the current increase in the share of non-nondestructive capacities in Russia and Uzbekistan and the implementation of programs for the development of renewable energy sources, primarily the construction of wind and solar power plants, were considered.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Choong-Koo Chang

In order to supply electric power to the safety related loads, safety and reliability of onsite power have to be ensured for the safety function performance in nuclear power plants. Even though the existing electric power system of APR1400 meets the requirements of codes regarding Class 1E system, there is a room for improvement in the design margin against the voltage drop and short circuit current. This paper discusses the amount that the voltage drop and short circuit current occur in the existing electric power system of APR1400. Additionally, this paper studies with regard to the improved model that has the extra margin against the high voltage drop and short circuit current by separation of unit auxiliary transformer (UAT) and standby auxiliary transformer (SAT) for the Class 1E loads. The improved model of the electric power system by separation of UAT and SAT has been suggested through this paper. Additionally, effects of reliability and cost caused by the electric power system modification are considered.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4119
Author(s):  
Sejin Baek ◽  
Gyunyoung Heo

Because the scope of risk assessments at nuclear power plants (NPPs) is being extended both spatially and temporally, conventional, or static fault trees might not be able to express failure mechanisms, or they could be unnecessarily conservative in their expression. Therefore, realistic assessment techniques are needed to adequately capture accident scenarios. In multi-unit probabilistic safety assessment (PSA), fault trees naturally become more complex as the number of units increases. In particular, when considering a shared facility between units of the electric power system (EPS), static fault trees (SFTs) that prioritize a specific unit are limited in implementing interactions between units. However, dynamic fault trees (DFTs) can be available without this limitation by using dynamic gates. Therefore, this study implements SFTs and DFTs for an EPS of two virtual NPPs and compares their results. In addition, to demonstrate the dynamic characteristics of the shared facilities, a station blackout (SBO), which causes the power system to lose its function, is assumed—especially with an inter-unit shared facility, AAC DG (Alternate AC Diesel Generator). To properly model the dynamic characteristics of the shared EPS in DFTs, a modified dynamic gate and algorithm are introduced, and a Monte Carlo simulation is adopted to quantify the DFT models. Through the analysis of the DFT, it is possible to confirm the actual connection priority of AAC DG according to the situation of units in a site. In addition, it is confirmed that some conservative results presented by the SFT can be evaluated from a more realistic perspective by reflecting this.


Sign in / Sign up

Export Citation Format

Share Document