biomass power plants
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Karine Dufossé ◽  
Marine Marie-Charlotte ◽  
Vincent Augiseau ◽  
Thierry Henrion ◽  
Hayet Djelal

The increasing demand for energy is leading to the increasing use of renewable resources, such as biomass, resulting in the significant development of the wood energy sector in recent years. On the one hand, and to a certain extent, the sector has generated many benefits. On the other hand, the challenges related to wood ash (WA) management such as increasing tonnages, landfilling, restrictive regulations for reuse, etc., have been weighing more heavily in the debate related to the wood energy sector. However, all studies have assumed that no environmental impacts can be attributed to WA production. This study aims at discussing this assumption, whether the WA is a waste or a co-product of heat generation. In the first place, WA deposits were estimated using the biomass database and ash content from the literature regarding the collective, industrial and tertiary biomass power plants (BPP) in the French region of Brittany. Then, the impacts of the generated WA were estimated using the attributional life cycle assessment (LCA) method through two different impact allocation procedures (IAP), “from cradle to gate” (excluding the waste treatment). In Brittany, for the year 2017, an estimated amount of 2.8 to 8.9 kilotons of WA was generated, and this production should increase to 5 to 15.7 kilotons by 2050. The LCA conducted through this study gave an emission of 38.6 g CO2eq /kW h, with a major contribution from the production of the wood chips. Considering the environmental aspect, the IAP analysis indicated that energy and economic allocations were not relevant, and that, using the mass allocation, the environmental production of WA could represent 1.3% of the impacts of the combustion process in BPP. Therefore, WA, and especially the fly ash, can be considered as a waste from BPP heat production, without any environmental impact attributed to its generation.


2021 ◽  
Vol 39 (5) ◽  
pp. 1443-1450
Author(s):  
Yanán Camaraza-Medina

In the present work, its show a summary of functional relationships developed for the application of dry condensation systems to Biomass Power Plants that present difficulties with access to water for condensation. The bibliographic review reveals the limitations of the analyzed works, in terms of the development of mathematical models and empirical correlations that allow evaluating the simultaneous effects of the surrounding meteorological variables on the average coefficient of heat transfer and the effect on the environment of the use of dry condensation. The analytical study is based on the weak solutions and their correlation with experimental quantities available in research already established in the area of action, a procedure is developed for the calculation of the average coefficients of heat transfer that includes the influence of local climatologically variables, the effect of the spatial distribution of the tubes package on the refrigerant and the confined confinement in inclined components, which increase the reliability of the thermo-hydraulic analysis and suppresses the need for the use of excess areas required by current methods. The proposed models and correlations allow the preparation of a procedure, by means of which all the possible operative variants are evaluated.


POROS ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 121
Author(s):  
Muhammad Ridwan Ridwan ◽  
Noviyanti Nugraha Nugraha

Biomass power plants are electricity generators with alternative energy that utilize organicmaterials, in this case cow dung. The cow dung is then processed to produce syngas. Syngas is used as fuelto turn turbines. In previous studies, a cow manure gasification reactor was designed and manufactured.This reactor is part of a biomass power plant system (PLTBm) which is made separately. The power outputtarget of this PLTBm is 370 kW. The purpose of this study was to examine the performance of the downdraftreactor of cow dung biomass, namely discharge, temperature, and analyze the gas content released by thereactor so that the power that can be generated by the reactor can be obtained. The test results obtained acombustion chamber temperature of 580°C and a discharge of 0.285 m3/s. The composition of the outputgas is acetylene 58.16%, hexane 27.66%, butane 6.38%, and methane 7.8%. From the calculation results,the power generated by the reactor is 342 kW.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5219
Author(s):  
Yuttana Homket ◽  
Pongthep Sutheravut ◽  
Sawpheeyah Nima

In 2015, the National Energy Policy Council (NEPC) approved the latest Alternative Energy Development Plan (AEDP) 2015–2036, targeting electricity generation from biomass, biogas, and municipal solid waste by 2036 towards the Thailand 4.0 policy. The small biomass power plants are intensively promoted, contributing to many more public concerns. Therefore, this study provided new insight using the readiness and resilience in the communities near the biomass power plant generation in Southern Thailand. The community readiness model (CRM) and community health impact assessment (CHIA) were adopted using mixed methods during January–November 2019. A total of 999 respondents replied to the questionnaires, 153 informants were interviewed, and the panel was discussed and analyzed by descriptive statistics and content analysis. Findings illustrated that all stakeholder sectors strengthened community-driven development based on the average community readiness (3.01 ± 0.11) in a vague awareness stage, only with participation in information giving (75.38%) and having an impact pain point score of 7.64 ± 0.54, which was a highly intense level used to develop the public policy towards biomass power plants. Recent advanced community tools offered new insights for the first time about community strategic plans for sustainable biomass power generation, to achieve community security and values of democracy in Southern Thailand.


2021 ◽  
Vol 70 (9&10) ◽  
pp. 145
Author(s):  
Zhibin Liu ◽  
Xin Wang ◽  
Aisheng Ren

Biomass power generation has characteristics of good quality of power generation, high reliability and mature technology. It plays significant aspects in maintaining the safety of energy, optimizing energy structure, alleviating environmental pollution and promoting the economic development in the rural areas. Analyzing the investment of biomass power generation in China systematically cannot only improve the scientificity of the investment process, but also guide the industry to develop rapidly and healthily. At present, the investment areas of agricultural biomass power generation projects are too concentrated and the fuel supply is difficult, which affect the normal operation of biomass power plants and lead to loss or on the verge of profit and loss of biomass power generation plants. This paper constructed the optimal model of investment location of agricultural biomass power generation projects using the iterative gravity algorithm based on the key factors analysis to affect the operation costs of agricultural biomass power plants. The model optimized the transportation lines and transportation distance, and gained the smallest transport costs of power generation materials after a few iterative calculations. This paper took Huantai County as an example, and determined the optimal investment location of agricultural biomass power project using the Region props toolbox of Matlab 7.4. The simulating calculation of Huantai County showed that the results given by this model are reliable, and this method to select the investment location of agricultural biomass power projects is feasible and effective.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3063
Author(s):  
Suzan Abdelhady ◽  
Mohamed A. Shalaby ◽  
Ahmed Shaban

Extensive studies are conducted to investigate the potential and techno-economic feasibility of bioenergy routes in different countries. However, limited researches have been focused on the whole national agricultural bioenergy resources in Egypt. This research provides an assessment of the potential agricultural biomass resources for electric energy production in Egypt. It provides a strategic perspective for the design of a national network of biomass power plants to utilize the spatially available agricultural residues throughout a country. A comprehensive approach is presented and is applied to Egypt. First, the approach estimates the amount, type, and characteristics of the agricultural residues in each Egyptian governorate. Then, a techno-economic appraisal for locating a set of collection stations, and installing a direct combustion biomass power plant in each governorate is conducted. SAM simulation software is used for the technical and economic appraisals, and preliminary plant capacities are estimated assuming one plant in each governorate. Secondly, a new mixed integer linear programming (MILP) model is proposed and applied to optimally design a biomass supply chain national network to maximize the overall network profit. The network is composed of the collection stations, the potential biomass power plants, and the flow distribution of residues to supply the selected plants. Results indicate that the Egyptian agricultural residue resources can produce 10 million ton/year of dry residues, generate 11 TWh/year, an average levelized cost of electricity () of 6.77 ¢/kWh, and supply about 5.5% of Egypt’s current energy needs. Moreover, the optimization results reveal that a network of 5 biomass power plants with capacities of 460 MW each should be established in Egypt. This approach is thought to be particularly suitable to other developing countries whose energy demand depends on fossil fuels and poses a heavy economic burden, and whose residues are massive, wasted, and not industrialized. The obtained results may also enrich future comparative research that studies the impact and feasibility of implementing agro-residue based biomass electric energy generation.


Author(s):  
Mohammad Reza Mohaghegh ◽  
Mohammad Heidari ◽  
Syeda Tasnim ◽  
Animesh Dutta ◽  
Shohel Mahmud

2021 ◽  
Vol 4 (1) ◽  
pp. 36-56
Author(s):  
Zefania Praventia Sutrisno ◽  
Attaya Artemis Meiritza ◽  
Anggit Raksajati

Indonesia is currently experiencing a significant increase in population, industrialization and energy demand. As the energy demand increases, so does the production of climate-altering CO2 emission. Biomass power plants have emerged as a low carbon power generation alternative, utilizing agricultural and industrial waste. Biomass power plants have the potential of being a carbon-negative power generation technology in the near future by integrating carbon and capture storage (bio-CCS). The objective of this paper is to analyze and map potential CO2 emission in the processes of biomass power plants from gasification and firing or co-firing technology, then recommend suitable carbon capture technology based on the biomass power plant characteristics in Indonesia. The CO2 emission to be captured in the gasification process is 11-15% of the producer gas, while in co-firing it is 7-24% of the flue gas stream. Using biomass instead of coal in power plants reduces the electric efficiency and increases the plant’s in-house emission, but when analyzed in a wider boundary system it is apparent that the net GWP and CO2 emission of biomass power plants are way smaller than coal power plant, moreover when equipped with carbon capture unit. Biomass power plant that uses firing technology can reduce CO2 emission by 148% compared to typical coal power plant. Installing carbon capture unit in biomass firing power plants can further reduce the specific CO2 emission by 262%. If carbon capture technology is implemented to all existing biomass power plants in Indonesia, it could reduce the greenhouse gas emission up to 2.2 million tonnes CO2 equivalent annually. It is found that there are 3 significant designs for gasification technology: NREL design, Rhodes & Keith design and IGBCC+DeCO2 design. The first two designs are not suitable to be retrofitted into existing biomass power plants in Indonesia since they are based on a specific BCL/FERCO gasifier. While IGBCC+DeCO2 design still needs further study regarding its feasibility. While for firing, the most promising technology to be applied in the near future is solvent-based absorption because it is already on commercial scale for coal-based power plants and can be implemented for other source, e.g. biomass power plant. Bio-CCS in existing biomass power plant with firing technology is likely to be implemented in the near future compared to the gasification, because it applies the post combustion capture as an “end-of-pipe” technology which is generally seen as a more viable option to be retrofitted to existing power plants, resulting in potentially less expensive transition.


Sign in / Sign up

Export Citation Format

Share Document