scholarly journals Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems

2019 ◽  
Vol 133 ◽  
pp. 1468-1478 ◽  
Author(s):  
Luis Ramirez Camargo ◽  
Katharina Gruber ◽  
Felix Nitsch
Author(s):  
Troy V. Nguyen ◽  
Aldo Fabregas Ariza ◽  
Nicholas W. Miller ◽  
Ismael Cremer

Airports are key components of the global transportation system and are the subject of continuous sustainability improvements. Promoting clean energy sources and energy-efficient practices can help attain major sustainability goals at airports around the world. Although small airports are greater in number, most of the “sustainability” attention has been given to large airports. Small airports are typically located in rural areas, making them excellent candidates for renewable energy. This paper focuses on the planning and selection of renewable energy systems as a strategic method to reduce energy use and increase electric power reliability at small-scale airport facilities. The target system may use a combination of renewable energy sources to produce electrical power for the on-site facilities. The framework details include methods of energy collection, power production, and energy storage that are environmentally sound. A small airport serving a dual role as a flight training facility was used as case study. In the case study, systems engineering methodology was adapted to the small airport/ renewable energy domain in order to effectively identify stakeholders and elicit user requirements. These, coupled with industrial standards, relevant government regulations, and a priori constraints, are used to derive the initial requirements that serve as the basis for a preliminary design. The proposed framework also contains provisions for an on-site assessment of existing airport energy needs, sources, providers, and location-specific assets and challenges.


Author(s):  
Mazharul Islam ◽  
A. K. M. Sadrul Islam ◽  
M. Ruhul Amin

About 2 billion people of the world, mostly in rural areas of the developing countries, do not have access to grid-based electricity. The most critical factor affecting their livelihoods is access to clean, affordable and reliable energy services for household and productive uses. Under this backdrop, renewable and readily available energy from the nature can be incorporated in several proven renewable energy technology (RET) systems and can play a significant role in meeting crucial energy needs in these remote far flung areas. RETs are ideal as distributed energy source and they can be incorporated in packages of energy services and thus offer unique opportunities to provide improved lighting, health care, drinking water, education, communication, and irrigation. Energy is also vital for most of the income-generating activities, both at the household or commercial levels. Access to energy is strongly connected to the achievement of the Millennium Development Goals (MDGs), which set targets for poverty reduction, improved health, and gender equality as well as environmental sustainability. Environmentally benign renewable energy systems can contribute significantly in the above-mentioned unserved or underserved areas in the developing countries to achieve both local and global environmental benefits. This is important in the context of sustainable development in: (i) poverty alleviation, (ii) education, (iii) gender equity and empowerment, (iv) health including other benefits like improved information access through Information and Communication Technology (ICT) centers, (v) better security, and (vi) increase in social or recreational opportunities. It is evident that proliferation of renewable energy resources through implementing their applications for meeting energy demand will promote all the three dimensions namely, social, economic and environmental of sustainable development in the developing countries. Several small scale enabling RET systems have been suggested in this paper in the light of above-mentioned issues of energy sustainability and they can significantly contribute to the improvement of the livelihood of the remote impoverished rural communities of the developing countries. With the current state of technology development, several RET systems (such as wind, solar photovoltaics, solar thermal, biomass and microhydro) have become successful in different parts of the world. In this paper, an exhaustive literature survey has been conducted and several successful and financially viable small-scale RET systems were analyzed. These systems have relevance to the economies of the developing countries that can be utilized for electrification of domestic houses, micro enterprises, health clinics, educational establishments and rural development centers.


2021 ◽  
Vol 13 (15) ◽  
pp. 8555
Author(s):  
Ali M. Eltamaly ◽  
Majed A. Alotaibi ◽  
Abdulrahman I. Alolah ◽  
Mohamed A. Ahmed

There is a growing interest in increasing the penetration rate of renewable energy systems due to the drawbacks associated with the use of fossil fuels. However, the grid integration of renewable energy systems represents many challenging tasks for system operation, stability, reliability, and power quality. Small hybrid renewable energy systems (HRES) are small-scale power systems consisting of energy sources and storage units to manage and optimize energy production and consumption. Appropriate real-time monitoring of HRES plays an essential role in providing accurate information to enable the system operator to evaluate the overall performance and identify any abnormal conditions. This work proposes an internet of things (IoT) based architecture for HRES, consisting of a wind turbine, a photovoltaic system, a battery storage system, and a diesel generator. The proposed architecture is divided into four layers: namely power, data acquisition, communication network, and application layers. Due to various communication technologies and the missing of a standard communication model for HRES, this work, also, defines communication models for HRES based on the IEC 61850 standard. The monitoring parameters are classified into different categories, including electrical, status, and environmental information. The network modeling and simulation of a university campus is considered as a case study, and critical parameters, such as network topology, link capacity, and latency, are investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document