Heat transfer and pressure drop performance of solar glycol/activated carbon based nanofluids in shot peened double pipe heat exchanger

2019 ◽  
Vol 140 ◽  
pp. 580-591 ◽  
Author(s):  
Ganesh Kumar Poongavanam ◽  
Balaji Kumar ◽  
Sakthivadivel Duraisamy ◽  
Karthik Panchabikesan ◽  
Velraj Ramalingam
2019 ◽  
Vol 55 (6) ◽  
pp. 1769-1781 ◽  
Author(s):  
H. Arya ◽  
M. M. Sarafraz ◽  
O. Pourmehran ◽  
M. Arjomandi

2017 ◽  
Vol 57 (2) ◽  
pp. 125 ◽  
Author(s):  
Putu Wijaya Sunu ◽  
I Made Rasta

This investigation was performed to experimentally investigate the enhancement of heat transfer and the friction of an annulus in a double pipe heat exchanger system with rectangular grooves in the turbulent flow regime. The shell is made of acrylic and its diameter is 28 mm. The tube is made of aluminium and its diameter is 20 mm. Grooves were incised in the annulus room with a circumferential pattern, with a groove space of 2 mm, a distance between the grooves of 8mm and a groove height of 0.3 mm. The experiments consist of temperature and pressure measurement and a flow visualization. Throughout the investigation, the cold fluid flowed in the annulus room. The Reynold number of cold fluid varied from about 31981 to 43601 in a counter flow condition. The volume flow rate of hot fluid remains constant with Reynold number about 30904. Result showed the effect of grooves, which are applied in the annulus room. The grooves induce the pressure drop, the pressure drop in the grooved annulus was greater by about 15.88% to 16.72% than the one in the smooth annulus. The total heat transfer enhancement is of 1.09–1.11. Moreover, the use of grooves in the annulus of the heat exchanger not only increase the heat transfer process, but also increase the pressure drop, which is related to the friction factor.


2019 ◽  
Vol 345 ◽  
pp. 815-824 ◽  
Author(s):  
Ganesh Kumar Poongavanam ◽  
Karthik Panchabikesan ◽  
Renuka Murugesan ◽  
Sakthivadivel Duraisamy ◽  
Velraj Ramalingam

SINERGI ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 51
Author(s):  
Sudiono Sudiono ◽  
Rita Sundari ◽  
Rini Anggraini

This preliminary investigation studied the effect of circular turbulator vortex generator on heat transfer rate and pressure drop in a circular channel countercurrent double pipe heat exchanger with water working fluid. Increasing the number of circular turbulator yielded increasing heat transfer rate and pressure drop. The problem generated when increased pressure drop occurred in relation to more energy consumption of the water pumping system. Therefore, optimization in circular turbulator number is necessary to minimize the pressure drop about distance length between circular turbulator, tube diameter and thickness, type of material and crystal lattice, as well as the geometrical shape of fluid passage (circular or square). This study applied PVC outer tube and copper alloy inner tube, as well as fiberglass circular turbulator. The optimum results showed that seven parts of circular turbulator increasing heat transfer rate by 30% and pressure drop by 80% compared to that passage in the absence of circular turbulator at cool water debit of 7 L/min.


2021 ◽  
pp. 300-300
Author(s):  
Sobhanadri Anantha ◽  
Senthilkumar Gnanamani ◽  
Vivekanandan Mahendran ◽  
Venkatesh Rathinavelu ◽  
Ramkumar Rajagopal ◽  
...  

The inclusion of baffles in a double pipe heat exchanger is becoming increasingly important as it improves the heat exchanger's performance. CFD analysis is used in this paper to investigate the performance of double pipe heat exchangers with and without helical baffles on both shell tube sides. The 3D Computation Fluid Dynamics (CFD) model was created in Solid Works, and the FloEFD software was used to analyze the conjugate Heat Transfer between the heat exchanger's tube and shell sides. Heat transfer characteristic like Outlet temperature of shell and tube are investigated along with pressure drop on shell and tube side. Based on CFD results of Double Pipe Heat exchanger with helical baffle on both shell side and tube side (Type 4) gives the better results than the other type of heat exchangers with an increased pressure drop than the others, results reveals that type 4 outlet temperature of shell side is 8% higher and on tube side it is 5.5% higher, also pressure drop on shell side is 12% higher and on tube side it is 42% higher than the other types.


Sign in / Sign up

Export Citation Format

Share Document