scholarly journals Experimental and numerical investigation of nonlinear diffraction wave loads on a semi-submersible wind turbine

2021 ◽  
Vol 171 ◽  
pp. 709-727
Author(s):  
Haoran Li ◽  
Erin E. Bachynski
2020 ◽  
Vol 1706 ◽  
pp. 012215
Author(s):  
Chandrakant R Sonawane ◽  
Rohan Sawant ◽  
Kishan Patel ◽  
Rohan Sonawala ◽  
Aditya Pawar ◽  
...  

2014 ◽  
Vol 116 ◽  
pp. 111-124 ◽  
Author(s):  
Louis Angelo Danao ◽  
Jonathan Edwards ◽  
Okeoghene Eboibi ◽  
Robert Howell

Energy ◽  
2016 ◽  
Vol 113 ◽  
pp. 1304-1315 ◽  
Author(s):  
Qing'an Li ◽  
Junsuke Murata ◽  
Masayuki Endo ◽  
Takao Maeda ◽  
Yasunari Kamada

2021 ◽  
Author(s):  
Carlos Eduardo Silva de Souza ◽  
Nuno Fonseca ◽  
Petter Andreas Berthelsen ◽  
Maxime Thys

Abstract Design optimization of mooring systems is an important step towards the reduction of costs for the floating wind turbine (FWT) industry. Accurate prediction of slowly-varying horizontal motions is needed, but there are still questions regarding the most adequate models for low-frequency wave excitation, and damping, for typical FWT concepts. To fill this gap, it is fundamental to compare existing load models against model tests results. This paper describes a calibration procedure for a three-columns semi-submersible FWT, based on adjustment of a time-domain numerical model to experimental results in decay tests, and tests in waves. First, the numerical model and underlying assumptions are introduced. The model is then validated against experimental data, such that the adequate load models are chosen and adjusted. In this step, Newman’s approximation is adopted for the second-order wave loads, using wave drift coefficients obtained from the experiments. Calm-water viscous damping is represented as a linear and quadratic model, and adjusted based on decay tests. Additional damping from waves is then adjusted for each sea state, consisting of a combination of a wave drift damping component, and one component with viscous nature. Finally, a parameterization procedure is proposed for generalizing the results to sea states not considered in the tests.


Author(s):  
G. K. V. Ramachandran ◽  
H. Bredmose ◽  
J. N. Sørensen ◽  
J. J. Jensen

A dynamic model for a tension-leg platform (TLP) floating offshore wind turbine is proposed. The model includes three-dimensional wind and wave loads and the associated structural response. The total system is formulated using 17 degrees of freedom (DOF), 6 for the platform motions and 11 for the wind turbine. Three-dimensional hydrodynamic loads have been formulated using a frequency- and direction-dependent spectrum. While wave loads are computed from the wave kinematics using Morison’s equation, aerodynamic loads are modelled by means of unsteady Blade-Element-Momentum (BEM) theory, including Glauert correction for high values of axial induction factor, dynamic stall, dynamic wake and dynamic yaw. The aerodynamic model takes into account the wind shear and turbulence effects. For a representative geographic location, platform responses are obtained for a set of wind and wave climatic conditions. The platform responses show an influence from the aerodynamic loads, most clearly through a quasi-steady mean surge and pitch response associated with the mean wind. Further, the aerodynamic loads show an influence from the platform motion through more fluctuating rotor loads, which is a consequence of the wave-induced rotor dynamics. In the absence of a controller scheme for the wind turbine, the rotor torque fluctuates considerably, which induces a growing roll response especially when the wind turbine is operated nearly at the rated wind speed. This can be eliminated either by appropriately adjusting the controller so as to regulate the torque or by optimizing the floater or tendon dimensions, thereby limiting the roll motion. Loads and coupled responses are predicted for a set of load cases with different wave headings. Based on the results, critical load cases are identified and discussed. As a next step (which is not presented here), the dynamic model for the substructure is therefore being coupled to an advanced aero-elastic code Flex5, Øye (1996), which has a higher number of DOFs and a controller module.


2021 ◽  
Vol 321 ◽  
pp. 03004
Author(s):  
Shalini Verma ◽  
Akshoy Ranjan Paul ◽  
Anuj Jain ◽  
Firoz Alam

Wind energy is one of the renewable energy resources which is clean and sustainable energy and the wind turbine is used for harnessing energy from the wind. The blades are the key components of a wind turbine to convert wind energy into rotational energy. Recently, wingtip devices are used in the blades of horizontal axis wind turbine (HAWT), which decreases the vortex and drag, while increases the lift and thereby improve the performance of the turbine. In the present study, a winglet is used at the tip of an NREL phase VI wind turbine blade. Solidworks, Pointwise, and Ansys-Fluent are used for geometric modeling, computational grid generation, and CFD simulation, respectively. The computational result obtained using SST k-ω turbulence modeling is well validated with the experimental data of NREL at 5 and 7 m/s of wind speeds. Numerical investigation of stall characteristics is carried out for wingleted blade at higher turbulence intensity (21% and 25%) and angle of attack (00 to 300 at 50 intervals) at 7 m/s wind speed. The result found that wingletd blade delay stall to 150 for both the cases of turbulence intensity. Increasing the turbulence intensity increases the lift coefficient at stall angle but drag coefficient also increases and thus a lower aerodynamic performance (CL/CD ratio = 13) is obtained. Wingleted blade improves the performance as the intensity of vortices is smaller compared to baseline blade


Sign in / Sign up

Export Citation Format

Share Document